Hypertension in children and adolescents has gained ground in cardiovascular medicine, thanks to the progress made in several areas of pathophysiological and clinical research. These guidelines represent a consensus among specialists involved in the detection and control of high blood pressure in children and adolescents. The guidelines synthesize a considerable amount of scientific data and clinical experience and represent best clinical wisdom upon which physicians, nurses and families should base their decisions. They call attention to the burden of hypertension in children and adolescents, and its contribution to the current epidemic of cardiovascular disease, these guidelines should encourage public policy makers, to develop a global effort to improve identification and treatment of high blood pressure among children and adolescents.
BACKGROUND Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.
We recently implicated two recurrent somatic mutations in an adrenal potassium channel, KCNJ5, as a cause of aldosterone-producing adrenal adenomas (APAs) and one inherited KCNJ5 mutation in a Mendelian form of early severe hypertension with massive adrenal hyperplasia. The mutations identified all altered the channel selectivity filter, producing increased Na + conductance and membrane depolarization, the signal for aldosterone production and proliferation of adrenal glomerulosa cells. We report herein members of four kindreds with early onset primary aldosteronism of unknown cause. Sequencing of KCNJ5 revealed that affected members of two kindreds had KCNJ5 G151R mutations, identical to one of the prevalent recurrent mutations in APAs. These individuals had severe progressive aldosteronism and hyperplasia requiring bilateral adrenalectomy in childhood for blood pressure control. Affected members of the other two kindreds had KCNJ5 G151E mutations, which are not seen in APAs. These subjects had easily controlled hypertension and no evidence of hyperplasia. Surprisingly, electrophysiology of channels expressed in 293T cells demonstrated that KCNJ5 G151E was the more extreme mutation, producing a much larger Na + conductance than KCNJ5 G151R, resulting in rapid Na + -dependent cell lethality. We infer that this increased lethality limits adrenocortical cell mass and the severity of aldosteronism in vivo, accounting for the milder phenotype among these patients. These findings demonstrate striking variations in phenotypes and clinical outcome resulting from different mutations of the same amino acid in KCNJ5 and have implications for the diagnosis and pathogenesis of primary aldosteronism with and without adrenal hyperplasia.adrenal gland | inwardly rectifying potassium channel | Kir3.4 H ypertension affects >1 billion people worldwide (1, 2) and contributes to >7 million deaths each year (3). In the United States, approximately half of adults with hypertension fail to achieve control of blood pressure (4), and successful treatment commonly requires three or more drugs. The study of rare Mendelian forms of hypertension has demonstrated the key role of renal salt reabsorption in blood pressure regulation. Mutations in genes resulting in increased net salt reabsorption markedly raise blood pressure, whereas those that reduce salt reabsorption can cause life-threatening low blood pressure (5, 6).Although in the large majority of hypertensive subjects, the underlying causes are unknown ("essential hypertension"), some cases can be attributed to specific disorders of the kidney and endocrine system (7). Among these, primary aldosteronism is found in ∼10% of patients referred for evaluation of hypertension (8). These patients typically present with hypertension owing to excessive aldosterone secretion that is independent of activity of the renin-angiotensin system and plasma K + levels. High aldosterone levels increase renal salt reabsorption, leading to hypertension.Hypokalemia and metabolic alkalosis are variable feat...
Kawasaki disease is a systemic vasculitis of unknown etiology, with clinical observations suggesting a substantial genetic contribution to disease susceptibility. We conducted a genome-wide association study and replication analysis in 2,173 individuals with Kawasaki disease and 9,383 controls from five independent sample collections. Two loci exceeded the formal threshold for genome-wide significance. The first locus is a functional polymorphism in the IgG receptor gene FCGR2A (encoding an H131R substitution) (rs1801274; P = 7.35 × 10(-11), odds ratio (OR) = 1.32), with the A allele (coding for histadine) conferring elevated disease risk. The second locus is at 19q13, (P = 2.51 × 10(-9), OR = 1.42 for the rs2233152 SNP near MIA and RAB4B; P = 1.68 × 10(-12), OR = 1.52 for rs28493229 in ITPKC), which confirms previous findings(1). The involvement of the FCGR2A locus may have implications for understanding immune activation in Kawasaki disease pathogenesis and the mechanism of response to intravenous immunoglobulin, the only proven therapy for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.