HeLa was the first human cell line established (1952) and became one of the most frequently used lines because of its hardiness and rapid growth rate. During the next two decades, the development of other human cell lines mushroomed. One reason for this became apparent during the 1970s, when it was demonstrated that many of these cell lines had been overgrown and replaced by fast-growing HeLa cells inadvertently introduced into the original cultures. Although the discovery of these "HeLa contaminants" prompted immediate alarm, how aware are cell culturists today of the threat of cell line cross-contamination? To answer this question, we performed a literature search and conducted a survey of 483 mammalian cell culturists to determine how many were using HeLa contaminants without being aware of their true identity and how many were not using available means to ensure correct identity. Survey respondents included scientists, staff, and graduate students in 48 countries. HeLa cells were used by 32% and HeLa contaminants by 9% of survey respondents. Most were also using other cell lines; yet, only about a third of respondents were testing their lines for cell identity. Of all the cell lines used, 35% had been obtained from another laboratory instead of from a repository, thus increasing the risk of false identity. Over 220 publications were found in the PubMed database (1969-2004) in which HeLa contaminants were used as a model for the tissue type of the original cell line. Overall, the results of this study indicate a lack of vigilance in cell acquisition and identity testing. Some researchers are still using HeLa contaminants without apparent awareness of their true identity. The consequences of cell line cross-contamination can be spurious scientific conclusions; its prevention can save time, resources, and scientific reputations.
Myelin isolated from three areas of mouse brain, from whole brain at several ages in normal mice, and from whole brain of adult quaking mutant mice was separated into seven bands and a pellet on discontinuous density gradients using 0.32, 0.45, 0.55, 0.60, 0.70, 0.75 and 0.85 M sucrose. The distribution of myelin in the subfractions was independent of homogenization and shocking conditions employed to isolate the myelin preparations, but was related to the type of myelin applied to the gradient. Compared to myelin isolated from older animals, myelin isolated from 18-24 day old mice displayed a distribution pattern with greater proportions of material banding at lesser sucrose densities. Similarly, myelin obtained from hindbrain contained proportionately more material layering at lesser sucrose densities compared to myelin isolated from cerebral cortex. Myelin subfraction patterns observed for 8-12 day old control mice and quaking mutants were unlike each other or any other myelin preparation examined. In the 18-90 days old animals, the markers studied were not uniformly distributed among the myelin subfractions. The pellet and the layer banding at the 0.75/0.85 M sucrose interface contained the highest specific concentrations of sialic acid, nucleic acid, and total adenosine triphosphatase activity. In contrast, the specific activity of 2',3'-cyclicnucleotide-3'-phosphohydrolase was lowest in the pellet as well as the three bands obtained above 0.60 M sucrose and was highest in the fraction banding at the 0.65/0.70 M sucrose interface. The results obtained were not consistent with an artifactual origin of the myelin subfractions, but instead suggested that the subfraction have physiological significance. One explanation for the different banding patterns observed between young and mature myelin may be the different amount of myelin in various brain regions during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.