This paper investigates the use of shape-memory polymer thin films in microelectromechanical systems (MEMS). shape-memory polymers possess the capacity to recover large-strain deformations by the application of heat and are candidates for small-scale transduction. The key advantages of shape-memory polymers are their low material/fabrication cost coupled with their simplicity of integration/operation. In the present study, shape-memory polymers are spin coated onto a standard Si wafer and polymerized by thermal annealing. The thermomechanics of strain storage and recovery in the polymer films are studied using instrumented microindentation. The sharp microindents demonstrate full recovery at all load levels, establishing the feasibility of microscale actuation. The microindentation response of the polymer film is shown to depend on temperature and the cooling cycle during indentation. In turn, the subsequent recovery behavior of an indent depends on the thermal history during indentation. Indents performed at higher temperatures are larger in size, but have smaller stored strain energy compared to indents performed at low temperature. The larger stored strain energy in low temperature indents results in lower shape recovery temperatures. The effects of indentation temperature and load are systematically investigated to provide a framework for the use of shape-memory polymers in microsystems. Application of shape-memory polymers is demonstrated through the development of an active microfluidic reservoir. The reservoir was created by indentation at the end of a microfluidic channel and was activated by local heating. The collapse of the filled reservoir caused the motion of fluid down the microfluidic channel.[1185]
We present results on the thermomechanical behavior of bare and nanocoated gold/polysilicon (Au/Si) bilayer cantilever beams for microelectromechanical system applications. The cantilever beams have comparable thicknesses of the Au and Si layers and thus experience significant out-of-plane curvature due to a temperature change. The experiments focus on the inelastic behavior of the bilayer beams due to thermal holding and thermal cycling. In uncoated Au/Si beams, thermal holding directly after release or thermal cycling both lead to a curvature decrease as a function of time or cycle number, respectively. The drop in curvature during thermal cycling or thermal holding in uncoated beams was not accompanied by a change in the slope of the thermoelastic curvature–temperature relationship. The absolute change in curvature depends on the temperature and the holding time. When holding or cycling to a temperature of 175 °C, the curvature change in uncoated beams is minimal for hold times up to 4500 min or 15,000 cycles. When holding or cycling to temperatures of 200 or 225 °C, the curvature in uncoated beams drops by a factor of three for hold times up to 4500 min or 15,000 cycles. The surface structure induced by long-term holding of uncoated beams shows grooving at the grain boundaries while the surface structure induced by cycling of uncoated beams shows consolidation of the grain boundaries. The Au/Si beams with a conformal 40-nm atomic layer deposition Al2O3 coating show a considerably different response compared to identical Au/Si bare beams subjected to the same thermal histories. The coating completely suppresses decreases in curvature when the beams are held at 225 °C for 4500 min. On the contrary, the coating does not always suppress thermal ratcheting when the beam is cycled from a low temperature to 225 °C. In the coated beams, the drop in curvature due to thermal cycling was accompanied by a change in the thermoelastic slope of the curvature–temperature relationship. Negligible microstructural changes were detected on the Al2O3-coated Au surface after holding or cycling. The results are discussed in light of potential deformation mechanisms and a simple analysis linking the mismatch strain between the layers to the curvature in the beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.