The integron/gene cassette systems identified in bacteria comprise a class of genetic elements that allow adaptation by acquisition of gene cassettes. Integron gene cassettes have been shown to facilitate the spread of drug resistance in human pathogens but their role outside a clinical setting has not been explored extensively. We sequenced 2145 integron gene cassettes from four marine sediment samples taken from the vicinity of Halifax Nova Scotia, Canada, increasing the number of gene cassettes obtained from environmental microbial communities by 10-fold. Sequence analyses reveals that the majority of these cassettes encode novel proteins and that this study is consistent with previous claims of high cassette diversity as we estimate a Chao1 diversity index of approximately 3000 cassettes from these samples. The functional distribution of environmental cassettes recovered in this study, when compared with that of cassettes from the only other source with significant sampling (Vibrio genomes) suggests that alternate selection regimes might be acting on these two gene pools. The majority of cassettes recovered in this study encode novel, unknown proteins. In instances where we obtained multiple alleles of a novel protein we demonstrate that non-synonymous versus synonymous substitution rates ratios suggest relaxed selection. Cassette-encoded proteins with known homologues represent a variety of functions and prevalent among these are isochorismatases; proteins involved in iron scavenging. Phylogenetic analysis of these isochorismatases as well as of cassette-encoded acetyltransferases reveals a patchy distribution, suggesting multiple sources for the origin of these cassettes. Finally, the two most environmentally similar sample sites considered in this study display the greatest overlap of cassette types, consistent with the hypothesis that cassette genes encode adaptive proteins.
Integrons are genetic platforms that accelerate lateral gene transfer (LGT) among bacteria. They were first detected on plasmids bearing single and multiple drug resistance determinants in human pathogens, and it is abundantly clear that integrons have played a major role in the evolution of this public health menace. Similar genetic elements can be found in nonpathogenic environmental bacteria and in metagenomic environmental DNA samples, and it is reasonable to suppose that integrons have facilitated microbial adaptation through LGT in niches outside infectious disease wards. Here we show that a heavily impacted estuary, exposed for almost a century to products of coal and steel industries, has developed a rich and unique cassette metagenome, containing genes likely to aid in the catabolism of compounds associated with industrial waste found there. In addition, we report that the most abundant cassette recovered in this study is one that encodes a putative LysR protein. This autoregulatory transcriptional regulator is known to activate transcription of linked target genes or unlinked regulons encoding diverse functions including chlorocatechol and dichlorophenol catabolism. Finally, only class 1 integrase genes were amplified in this study despite using different primer sets, and it may be that the cassettes present in the Tar Ponds will prove to be associated with class 1 integrase genes. Nevertheless, our cassette library provides a snapshot of a complex evolutionary process involving integron-meditated LGT likely to be important in natural bioremediation.
Approximately 200 serogroups of Vibrio cholerae exist, with only two, O1 and O139, responsible for epidemic and pandemic cholera. Strains from these serogroups have evolved from a common progenitor, with lateral gene transfer largely driving their emergence. These strains are so closely related that separation using single-or multi-locus phylogeny has proven difficult. V. cholerae strains contain a genetic system called the integron that is located in the chromosome and that can integrate and excise DNA elements called mobile gene cassettes (MGCs) by site-specific recombination. Large arrays of MGCs are found in V. cholerae strains. For instance, the O1 El Tor strain N16961 contains 179 MGCs. Since integron arrays are dynamic through recombination and excision of MGCs, it was hypothesized that the MGC composition in a given V. cholerae pandemic strain would be useful as a phylogenetic typing system. To address this, a PCR-based method was used to rapidly characterize the MGC composition of V. cholerae arrays. The results showed that the MGC composition of pandemic V. cholerae cassette arrays is relatively conserved, providing further evidence that these strains have evolved from a common progenitor. Comparison of MGC composition between the V. cholerae pandemic strains was also able to resolve the evolution of O139 from a subgroup of O1 El Tor. This level of differentiation of closely related V. cholerae isolates was more sensitive than conventional single-gene phylogeny or multi-locus sequence analysis. Using this method, novel MGCs from an O1 classical strain and an Argentinian O139 isolate were also identified, and a major deletion in the MGC array in all pandemic O139 strains and a subset of O1 El Tor strains was identified. Analysis of sequenced V. cholerae integron arrays showed that their evolution can proceed by rearrangements and deletions/insertions of large portions of MGCs in addition to the insertion or excision of single MGCs.
Background: Although integrons and their associated gene cassettes are present in ~10% of bacteria and can represent up to 3% of the genome in which they are found, very few have been properly identified and annotated in public databases. These genetic elements have been overlooked in comparison to other vectors that facilitate lateral gene transfer between microorganisms.
Background: Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be). Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.