Cytosolic creatine kinase exists in native form as a dimer; however, the reasons for this quaternary structure are unclear, given that there is no evidence of active site communication and more primitive guanidino kinases are monomers. Three fully conserved residues found in one-half of the dimer interface of the rabbit muscle creatine kinase (rmCK) were selectively changed to alanine by site-directed mutagenesis. Four mutants were prepared, overexpressed, and purified: R147A, R151A, D209A, and R147A/R151A. Both the R147A and R147A/R151A were confirmed by size-exclusion chromatography and analytical ultracentrifugation to be monomers, whereas R151A was dimeric and D209A appeared to be an equilibrium mixture of dimers and monomers. Kinetic analysis showed that the monomeric mutants, R147A and R147A/R151A, showed substantial enzymatic activity. Substrate binding affinity by R147A/R151A was reduced approximately 10-fold, although k(cat) was 60% of the wild-type enzyme. Unlike the R147A/R151A, the kinetic data for the R147A mutant could not be fit to a random-order rapid-equilibrium mechanism characteristic of the wild-type, but could only be fit to an ordered mechanism with creatine binding first. Substrate binding affinities were also significantly lower for the R147A mutant, but k(cat) was 11% that of the native enzyme. Fluorescence measurements using 1-anilinonaphthalene-8-sufonate showed that increased amounts of hydrophobic surface area are exposed in all of the mutants, with the monomeric mutants having the greatest amounts of unfolding. Thermal inactivation profiles demonstrated that protein stability is significantly decreased in the monomeric mutants compared to wild-type. Denaturation experiments measuring lambda(max) of the intrinsic fluorescence as a function of guanidine hydrochloride concentration helped confirm the quaternary structures and indicated that the general unfolding pathway of all the mutants are similar to that of the wild-type. Collectively, the data show that dimerization is not a prerequisite for activity, but there is loss of structure and stability upon formation of a CK monomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.