Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.
The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.
The potato cyst nematode Globodera pallida is a serious pest of potato crops. Nematode FMRFamide-like peptides (FLPs) are one of the most diverse neuropeptide families known, and modulate sensory and motor functions. As neuromuscular function is a well-established target for parasite control, parasitic nematode FLP signaling has significant potential in novel control strategies. In the absence of transgenic parasitic nematodes and the reported ineffectiveness of neuronal gene RNAi in Caenorhabditis elegans, nothing is known about flp function in nematode parasites. In attempts to evaluate flp function in G. pallida, we have discovered that, unlike in C. elegans, these genes are readily susceptible to RNAi. Silencing any of the five characterized G. pallida flp genes (Gp-flp-1, -6, -12, -14, or -18) incurred distinct aberrant behavioral phenotypes consistent with key roles in motor function. Further delineation of these effects revealed that double-stranded RNA exposure time (> or = 18 h) and concentration (> or = 0.1 microg/ml) were critical to the observed effects, which were reversible. G. pallida flp genes are essential to coordinated locomotory activities, do not display redundancy, and are susceptible to RNAi, paving the way for the investigation of RNAi-mediated flp gene silencing as a novel plant parasite control strategy.
BackgroundG protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.ResultsApplication of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.ConclusionsGenome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.
The survival of motor neurons is controlled by multiple factors that regulate different aspects of their physiology. The identification of these factors is important because of their relationship to motor neuron disease. We investigate here whether Mullerian Inhibiting Substance (MIS) is a motor neuron survival factor. We find that motor neurons from adult mice synthesize MIS and express its receptors, suggesting that mature motor neurons use MIS in an autocrine fashion or as a way to communicate with each other. MIS was observed to support the survival and differentiation of embryonic motor neurons in vitro. During development, male-specific MIS may have a hormone effect because the blood-brain barrier has yet to form, raising the possibility that MIS participates in generating sex-specific differences in motor neurons.Mullerian Inhibiting Substance type II receptor M otor neurons are particularly prone to age-related deterioration (1-3), which, in the extreme, leads to motor neuron disease and to death by paralysis. The survival of motor neurons is controlled by multiple factors, each of which appears to have a different physiological role. Motor neurons are, for instance, regulated by skeletal muscle fibers and Schwann cells via cardiotrophin-1 (4), TGF-2 (5, 6), and glial-cell-line-derived neurotrophic factor (GDNF) (7,8). Motor neurons also receive protection against viral-and hypoxic-induced damage through IL-6 (9) and VEGF (10, 11), respectively. Variations in the VEGF gene cause adult-onset motor-neuron degeneration in some mice and have been linked to ALS in some human populations (10, 11). These findings have renewed interest in identifying nonclassical neuronal survival factors.Mullerian Inhibiting Substance (MIS) is examined herein as a motor-neuron survival factor given that we found high expression of ligand and receptors in motor neurons. MIS is a member of the TGF- superfamily, which includes motor-neuron survival factors, such as GDNF and TGF-2. The known physiological actions of MIS are thought to be limited to sexual differentiation of males and to the function of mature reproductive tissues of both sexes (12). These studies introduce a possible function for this interesting molecule and its known signaling pathway.TGF- superfamily members signal through a complex of type I and type II receptors (13). MIS has a unique type II receptor (MISRII) but shares type I receptors with other members of the superfamily (12, 13). Genetic, organ culture, and cellular evidence implicates activin receptor-like kinase 3 (ALK3) (14) and ALK2 (Y. Zhan, D.T.M., and P.K.D., unpublished data) (15) as type I receptors for MIS in murine sexual differentiation, although ALK6 is likely to be involved in other cellular contexts (12, 16).We find that adult motor neurons from male and female mice synthesize MIS and its receptors, with the MIS receptor mRNA in motor neurons being much more abundant than the mRNAs for the GDNF and TGF- receptors. Our experiments show that MIS supports the survival of embryonic motor n...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.