Several different neuronal populations are involved in regulating energy homeostasis. Among these, agoutirelated protein (AgRP) neurons are thought to promote feeding and weight gain; however, the evidence supporting this view is incomplete. Using designer receptors exclusively activated by designer drugs (DREADD) technology to provide specific and reversible regulation of neuronal activity in mice, we have demonstrated that acute activation of AgRP neurons rapidly and dramatically induces feeding, reduces energy expenditure, and ultimately increases fat stores. All these effects returned to baseline after stimulation was withdrawn. In contrast, inhibiting AgRP neuronal activity in hungry mice reduced food intake. Together, these findings demonstrate that AgRP neuron activity is both necessary and sufficient for feeding. Of interest, activating AgRP neurons potently increased motivation for feeding and also drove intense food-seeking behavior, demonstrating that AgRP neurons engage brain sites controlling multiple levels of feeding behavior. Due to its ease of use and suitability for both acute and chronic regulation, DREADD technology is ideally suited for investigating the neural circuits hypothesized to regulate energy balance.
SUMMARY Pain processing in the spinal cord has been postulated to rely on nociceptive transmission (T) neurons receiving inputs from nociceptors and Aβ mechanoreceptors, with Aβ inputs gated through feed-forward activation of spinal inhibitory neurons (IN). Here we used intersectional genetic manipulations to identify these critical components of pain transduction. Marking and ablating six populations of spinal excitatory and inhibitory neurons, coupled with behavioral and electrophysiological analysis, showed that excitatory neurons expressing somatostatin (SOM) represent T-type cells, whose ablation causes loss of mechanical pain. Inhibitory neurons marked by the expression of dynorphin (Dyn) represent IN-type neurons, which are necessary to gate Aβ fibers from activating SOM+ neurons to evoke pain. Therefore, peripheral mechanical nociceptors and Aβ mechanoreceptors, together with spinal SOM+ excitatory and Dyn+ inhibitory neurons form a microcircuit that transmits and gates mechanical pain.
Dopamine (DA) is synonymous with reward and motivation in mammals1,2. However, only recently has dopamine been linked to motivated behavior and rewarding reinforcement in fruit flies3,4. Instead octopamine (OA) has historically been considered the signal for reward in insects5–7. Here we show using temporal control of neural function in Drosophila that only short-term appetitive memory is reinforced by OA. Moreover, OA-dependent memory formation requires signaling through DA neurons. Part of the OA signal requires the α-adrenergic like OAMB receptor in an identified subset of mushroom body (MB)-targeted DA neurons. OA triggers an increase in intracellular calcium in these DA neurons and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking OA. Analysis of the β-adrenergic like Octβ2R receptor reveals that OA-dependent reinforcement also requires an interaction with DA neurons that control appetitive motivation. These data suggest that sweet taste engages a distributed OA signal that reinforces memory through discrete subsets of MB-targeted DA neurons. In addition, they reconcile prior findings with OA and DA and suggest that reinforcement systems in flies are more similar to mammals than previously envisaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.