Selective ion exchange is one of the preferred treatment technologies for removing low levels of perchlorate (ClO4-) from contaminated water because of its high efficiency and minimal impact on water quality through the addition or removal of chemicals and nutrients. However, the exceptionally high affinity of ClO4- for type I anion-exchange resins makes regeneration with conventional NaCl brine extremely difficult and costly for practical applications. The present study entails the development of a novel regeneration methodology applicable to highly selective anion-exchange resins. Tetrachloroferrate (FeCl4-) anions, formed in a solution of ferric chloride and hydrochloric acid (e.g., 1 M FeCl3 and 4 M HCl), were found to effectively displace Cl04- anions that were sorbed on the resin. A mass-balance analysis indicated that a nearly 100% recovery of ion-exchange sites was achieved by washing with as little as approximately 5 bed volumes of the regenerant solution in a column flow-through experiment There was no significant deterioration of the resin's performance with respect to ClO4- removal after repeated loading and regeneration cycles. Thus, the new methodology may offer a cost-effective means to regenerate ClO4- -loaded resins with improved regeneration efficiency, recovery, and waste minimization in comparison with conventional brine regeneration techniques.
The silicon oxynitride glasses take advantage of nitrogen bonding to attain high elastic modulus, increased softening temperatures and viscosities, greater slow crack growth resistance, and modest gains in fracture resistance. Of the oxynitride glasses, the Si–Y–Al‐based oxynitride glasses have been most extensively studied and a degree of success has been achieved in understanding how changes in glass composition affect structural parameters and their relationship with properties. More recent studies have focused on the Si–RE–Me oxynitride glasses, where Me is primarily Al or Mg and rare earth (RE) includes most of the lanthanide series elements. These glasses possess a range of elastic, thermal, mechanical, and optical properties, which can be correlated with the strength of the RE bond in terms of the cationic field strength. However, such correlations require knowledge of not only the RE valence state but also its coordination with the anions. Herein, the current state‐of‐the‐art understanding of the properties and structural parameters of oxynitride glasses and their interrelationships are reviewed.
Mechanical property characterization including bending, tensile, and fracture properties for a new functionalized nanofiber/epoxy composite were conducted. Results show that there was only very little increase in mechanical properties of nanocomposites although we used GCNF-ODA reactive linkers to improve the interface. The interfacial stress level of nanocomposites should be much higher than that of traditional composites because of high property mismatch between the nanoscale reinforcement and the matrix. In order to design strong and stiff nanocomposite materials, one should use aligned nanofibers with a relatively large volume or weight fraction. Also, the length of the nanofiber should be long enough and its diameter not very small in order to facilitate the interfacial load transfer mechanism.
The growth times of single-wall carbon nanotubes ͑SWNT's͒ within a high-temperature laser-vaporization ͑LV͒ reactor were measured and adjusted through in situ imaging of the plume of laser-ablated material using Rayleigh-scattered light induced by time-delayed, 308-nm laser pulses. Short SWNT's were synthesized by restricting the growth time to less than 20 ms for ambient growth temperatures of 760-1100°C. Statistical analysis of transmission electron microscope photographs indicated most-probable lengths of 35-77 nm for these conditions. Raman spectra ͑E ex ϭ1.96 and 2.41 eV͒ of the short nanotubes indicate that they are wellformed SWNT's. The temperature of the particles in the vortex-ring-shaped plume during its thermalization to the oven temperature was estimated by collecting its blackbody emission spectra at different spatial positions inside the oven and fitting them to Planck's law. These data, along with detailed oven temperature profiles, were used to deduce a complete picture of the time spent by the plume at high growth temperatures ͑760-1100°C͒. The upper and lower limits of the growth rates of SWNT's were estimated as 0.6 and 5.1 m/s for the typical nanosecond Nd:YAG laser-vaporization conditions used in this study. These measurements permit the completion of a general picture of SWNT growth by LV based on imaging, spectroscopy, and pyrometry of ejected material at different times after ablation, which confirms our previous measurements that the majority of SWNT growth occurs at times greater than 20 ms after LV by the conversion of condensed phase carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.