About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday 1 . Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres 2,3 . In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles 4 , thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth 5,6 , leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer 7-10 . Although recent studies [11][12][13] predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon 2 , and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory) 2,14 , has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown 15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10 −4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10 −4.5 to 10 −0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.Two measurement campaigns at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber (Methods) focused on aerosol growth with different levels of sulfuric acid and α-pinene oxidation products. With the chamber at 278 K and 38% relative humidity, tropospheric concentrations of α-pinene, ozone (O 3 ) and SO 2 were introduced (see Extended Data Table 1). Using various instruments (Methods and Extended Data Fig. 1) we measured the behaviour of freshly nucleated particles of 1-2 nm diameter and their subsequent growth up to 80 nm. Two chemical ionization mass spectrometers (Methods) using nitrate as th...
Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere. N ucleation of particles occurs throughout Earth's atmosphere by condensation of trace vapors (1-3). Around 40 to 70% of global cloud condensation nuclei (CCN) (4-6) are thought to originate as nucleated particles, so the process has a major influence on the microphysical properties of clouds and the radiative balance of the global climate system. However, laboratory measurements are needed to disentangle and quantify the processes that contribute to particle formation, and very few laboratory measurements exist under atmospheric conditions (7)(8)(9)(10). This leaves open fundamental questions concerning the origin of particles on a global scale. First, it is not known whether nucleation is predominantly a neutral process, as assumed in most models (11-13), or whether atmospheric ions are important (6,(14)(15)(16). This relates to the question of whether solar-modulated galactic cosmic rays (GCRs) affect aerosols, clouds, and climate (17-21). Second, the lack of measurements of nucleation rates at low temperatures means that the origin of new particles in the vast regions of the cold free troposphere has not yet been experimentally established. Third, whereas it has been shown that nucleation of sulfuric acid (H 2 SO 4 )-water particles in the boundary layer requires stabilizing molecules such as ammonia (NH 3 ), amines, or oxidized organic compounds (7,8,(22)(23)(24), it is not yet known from existing experimental data over how much of the troposphere these molecules are important for nucleation. Robust atmospheric models to answer these questions need to be founded on direct measurements of nucleation rates. At present, to simulate nucleation over a very wide range of atmospheric conditions, global models must use theoretical nucleation models (25, 26), which can require adjustments to the nucleation rates of several orders of magnitude to obtain reasonable agreement with ambient observations (27,28).The lack of an experimentally based model of global particle nucleation is in stark contrast to global models of atmos...
The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.