Lamotrigine (LTG) [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is a novel anticonvulsant chemically unrelated to current antiepileptic drugs and with a pharmacological profile similar to that of phenytoin. The effect of LTG has been compared with that of phenytoin, on the release of endogenous amino acids and radiolabelled acetylcholine evoked by veratrine or potassium, from slices of rat cerebral cortex in vitro. Both veratrine and potassium evoked a marked release of glutamate and gamma-aminobutyric acid (GABA), with a more moderate release of aspartate. LTG inhibited veratrine-evoked release of glutamate and aspartate, with ED50 values of 21 microM for both amino acids, but LTG was less potent in the inhibition of GABA release (ED50 = 44 microM). At concentrations up to 300 microM, LTG had no effect on potassium-evoked amino acid release or on spontaneous release. Also, LTG was some five times less potent in the inhibition of veratrine-evoked [3H]acetylcholine release (ED50 = 100 microM) than in glutamate or aspartate release. The total lack of effect of LTG on potassium-evoked release and the potent effect on veratrine-evoked release (at concentrations found in rat brain after anticonvulsant doses) strongly suggest that LTG acts at voltage-sensitive sodium channels to stabilise neuronal membranes and inhibit transmitter release, principally glutamate. The role of glutamate in the aetiology of epilepsy is discussed.
The mechanisms by which neurons die after cerebral ischemia and related conditions in vivo are unclear, but they are thought to involve voltage-dependent Na ϩ channels, glutamate receptors, and nitric oxide (NO) formation because selective inhibition of each provides neuroprotection. It is not known precisely what their roles are, nor whether they interact within a single cascade or in parallel pathways. These questions were investigated using an in vitro primary cell culture model in which striatal neurons undergo a gradual and delayed neurodegeneration after a brief (5 min) challenge with the glutamate receptor agonist NMDA. Unexpectedly, NO was generated continuously by the cultures for up to 16 hr after the NMDA exposure. Neuronal death followed the same general time course except that its start was delayed by ϳ4 hr. Application of the NO synthase inhibitor nitroarginine after, but not during, the NMDA exposure inhibited NO formation and protected against delayed neuronal death. Blockade of NMDA receptors or of voltage-sensitive Na ϩ channels [with tetrodotoxin (TTX)] during the postexposure period also inhibited both NO formation and cell death. The NMDA exposure resulted in a selective accumulation of glutamate in the culture medium during the period preceding cell death. This glutamate release could be inhibited by NMDA antagonism or by TTX, but not by nitroarginine. These data suggest that Na ϩ channels, glutamate receptors, and NO operate interdependently and sequentially to cause neurodegeneration. At the core of the mechanism is a vicious cycle in which NMDA receptor stimulation causes activation of TTX-sensitive Na ϩ channels, leading to glutamate release and further NMDA receptor stimulation. The output of the cycle is an enduring production of NO from neuronal sources, and this is responsible for delayed neuronal death. The same neurons, however, could be induced to undergo more rapid NMDA receptor-dependent death that required neither TTX-sensitive Na ϩ channels nor NO.
Background and Purpose: The excitatory amino acid neurotransmitter glutamate is involved in excitotoxic brain injury and neurodegeneration after cerebral ischemia. Therefore, compounds that block the release of glutamate may be useful as cerebroprotective agents. The purpose of this study was to evaluate the cerebroprotective properties of a glutamate release inhibitor, BW619C89.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.