Telomeres are DNA and protein structures that form complexes protecting the ends of chromosomes. Understanding of the mechanisms maintaining telomeres and insights into their function have advanced considerably in recent years. This review summarizes the currently known components of the telomere/telomerase functional complex, and focuses on how they act in the control of processes occurring at telomeres. These include processes acting on the telomeric DNA and on telomeric proteins. Key among them are DNA replication and elongation of one telomeric DNA strand by telomerase. In some situations, homologous recombination of telomeric and subtelomeric DNA is induced. All these processes act to replenish or restore telomeres. Conversely, degradative processes that shorten telomeric DNA, and nonhomologous end-joining of telomeric DNA, can lead to loss of telomere function and genomic instability. Hence they too must normally be tightly controlled.
Telomeres are nucleoprotein structures present at the ends of eukaryotic chromosomes that play a central role in guarding the integrity of the genome by protecting chromosome ends from degradation and fusion. Length regulation is central to telomere function. To broaden our knowledge about the mechanisms that control telomere length, we have carried out a systematic examination of Ϸ4,800 haploid deletion mutants of Saccharomyces cerevisiae for telomere-length alterations. By using this screen, we have identified >150 candidate genes not previously known to affect telomere length. In two-thirds of the identified mutants, short telomeres were observed; whereas in one-third, telomeres were lengthened. The genes identified are very diverse in their functions, but certain categories, including DNA and RNA metabolism, chromatin modification, and vacuolar traffic, are overrepresented. Our results greatly enlarge the number of known genes that affect telomere metabolism and will provide insights into how telomere function is linked to many other cellular processes.
The ribonucleoprotein enzyme telomerase adds telomeric DNA onto chromosome ends and is normally regulated so that telomeric DNA lengths are kept within defined bounds. In the telomerase RNA gene from the yeast Kluyveromyces lactis, specific mutations that alter telomeric DNA sequences result in telomeres elongating to up to 100 times their normal length and impair cell growth. Some mutations cause immediate elongation whereas others behave like genetic time bombs, causing elongation only after a latent period of hundreds of generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.