Articles you may be interested inEnhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal Appl. Phys. Lett. 97, 191102 (2010); 10.1063/1.3499274Photogeneration of charge carrier correlated with amplified spontaneous emission in single crystals of a thiophene/phenylene co-oligomer
We report pressure (0–28 kbar) and temperature (1.1–4.3 K) dependent photon echo results for tetra-tert-butyl-terrylene (TBT) in a polyisobutylene (PIB) host. Increased pressure is found to increase the homogeneous dephasing rate over the temperature range of this study, in contrast to pressure dependent hole burning results reported for other polymer systems at somewhat higher temperatures (⩾4.2 K). A relatively small pressure increase (0 to 9 kbar) resulted in a change in the temperature dependence of the dephasing characterized by a lowering of the temperature power law exponent from ∼1.3 to ∼0.9. Further pressure increase above 9 kbar was characterized by an additional increase in the homogeneous dephasing rate without further change in the temperature exponent. The results are compared to high pressure photon echo studies of other polymer systems, and discussed in terms of the TLS (two-level-systems) model.
Disseminated Mississippi Valley-type (MVT) mineralization occurs throughout northeastern Wisconsin, USA, and is recognized as the source of regionally extensive natural groundwater contamination in the form of dissolved arsenic, nickel, and other related metals. Although considerable attention has been given to arsenic contamination of groundwater in the region, limited attention has been focused on characterizing the bedrock sources of these and other metals. A better understanding of the potential sources of groundwater contamination is needed, especially in areas where groundwater is the dominant source of drinking water. This article describes the regional, stratigraphic, and petrographic distribution of MVT mineralization in Paleozoic rocks of northeastern Wisconsin, with a focus on sulfide minerals. Whole-rock geochemical analysis performed on 310 samples of dolomite, sandstone, and shale show detectable levels of arsenic, nickel, cobalt, copper, lead, zinc, and other metals related to various sulfide mineral phases identified using scanning electron microscopy. MVT minerals include pyrite, marcasite, sphalerite, galena, chalcopyrite, fluorite, celestine, barite, and others. We describe the first nickel-and cobalt-bearing sulfide mineral phases known from Paleozoic strata in the region. Arsenic, nickel, and cobalt are sometimes present as isomorphous substitutions in pyrite and marcasite, but discrete mineral phases containing nickel and cobalt elements are also observed, including bravoite and vaesite. Locally abundant stratigraphic zones of sulfide minerals occur across the region, especially in the highly enriched Sulfide Cement Horizon at the top of the Ordovician St. Peter Sandstone. Abundant quantities of sulfides also appear near the contact between the Silurian Mayville Formation and the underlying Maquoketa and Neda formations in certain areas along and east of the Niagara escarpment. This article illustrates how a detailed geochemical and mineralogical investigation can yield a better understanding of groundwater quality problems.
The pressure-induced Raman shifts of six vibrational bands of 20% and 50% trans-polyacetylene nanoparticles in poly(vinylbutyral) matrix films (NPA/PVB) were studied from 0 to 45 kbar using a diamond anvil cell (DAC). The Raman shifts did not depend on the thickness of the two samples studied. Two of the vibrational bands displayed peak positions that depended on the isomeric compositions, with the 20% trans-NPA/PVB bands being slightly blue-shifted relative to the 50% trans-NPA/PVB bands over the 45 kbar pressure range. The Raman bands of NPA/PVB associated with the trans form initially exhibited a relatively large shift at low pressures (P < 10 kbar) along with a drastic change in their band profile. In order to investigate the relative shielding of the vibrational modes studied, a Grüneisen analysis of the pressure-induced shifts was conducted by estimating the parameters of the Murnaghan equation of state for solid polyacetylene (PA). Four of the six vibrational modes were found to be sensitive to compression of the interchain void space, while the other two modes were insensitive, indicating that they are relatively shielded from the compression of the sample.
The effect of high pressure on the optical dephasing of chromophores in organic polymers at low temperature is evaluated within the stochastic sudden jump two-level-system (TLS) model. The approximations within the "standard" TLS model cannot account for the observed pressure dependence of the pure dephasing rate without ad hoc assumptions about changes in the TLS density of states. However, the photon echo model of Geva and Skinner for disordered systems can be used to model pressure-dependent optical dephasing results for a variety of doped polymer systems without assuming changes in the TLS density of states. The relative importance of pressure-induced changes in TLS density, chromophore-TLS coupling, and TLS-phonon coupling is evaluated by fitting experimental high-pressure photon echo results to the TLS model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.