Polyglutamine repeats in proteins are highly correlated with amyloid formation and neurological disease. To better understand the molecular basis of glutamine repeat diseases, structural analysis of polyglutamine peptides as soluble monomers, oligomers, and insoluble amyloid fibrils is necessary. In this study, fluorescence resonance energy transfer (FRET) experiments and molecular dynamics simulations using different theoretical models of polyglutamine were conducted. This study demonstrates that a previously proposed simple C(α)C(β) model of polyglutamine, denoted as FCO, accurately reproduced the present FRET results and the results of previously published FRET, triplet-state quenching, and fluorescence correlation studies. Other simple C(α)C(β) models with random coil and extended β-strand parameters, and all-atom models with parm96 and parm99SB force fields, did not match the FRET result well. The FCO is an intrinsically disordered model with a high-effective persistence length producing extended peptides at short lengths (Q(N) < 10). Because of an increasing number of attractive Q-Q interactions at longer lengths, the FCO model becomes increasingly more compact at lengths between Q(N) ∼ 10-16 and is as compact as many folded proteins at Q(N) > 16.
The lamina propria within the vocal fold (VF) is a complex multi-layered tissue that increases in stiffness from the superficial to deep layer, where this characteristic is crucial for VF sound production. Tissue engineered scaffolds designed for VF repair must mimic the biophysical nature of the native vocal fold and promote cell viability, cell spreading, and vibration with air flow. In this study, we present a unique tri-layered, partially-degradable hydrogel scaffold that mimics the multi-layered structure of the VF lamina propria. Using thiol-norbornene photochemistry, tri-layered hydrogel scaffolds were fabricated via layer-by-layer stacking with increasing polymer concentration from the top to middle to deep layer. Mechanical analysis confirmed hydrogel modulus increased with increasing polymer concentration. Partially-degradable hydrogels promoted high cell viability and cell spreading in 3D as assessed via live/dead and cytoskeleton staining, respectively. Importantly, partially-degradable hydrogels maintained some degree of the 3D polymer network following protease exposure, while still enabling encapsulated cells to remodel their local environment via protease secretion. Finally, the tri-layered hydrogel scaffold successfully vibrated and produced sound in proof-of-concept air flow studies. This work represents a critical first step towards the design of a multi-layered, hydrogel scaffold for vocal fold tissue engineering.
The lamina propria within the vocal fold (VF) is a complex multi-layered tissue that increases in stiffness from the superficial to deep layer, where this characteristic is crucial for VF sound production. Tissue engineered scaffolds designed for VF repair must mimic the biophysical nature of the native vocal fold and promote cell viability, cell spreading, and vibration with air flow. In this study, we present a unique tri-layered, partially-degradable hydrogel scaffold that mimics the multi-layered structure of the VF lamina propria. Using thiol-norbornene photochemistry, tri-layered hydrogel scaffolds were fabricated via layer-by-layer stacking with increasing polymer concentration from the top to middle to deep layer. Mechanical analysis confirmed hydrogel modulus increased with increasing polymer concentration. Partially-degradable hydrogels promoted high cell viability and cell spreading in 3D as assessed via live/dead and cytoskeleton staining, respectively. Importantly, partially-degradable hydrogels maintained some degree of the 3D polymer network following protease exposure, while still enabling encapsulated cells to remodel their local environment via protease secretion. Finally, the tri-layered hydrogel scaffold successfully vibrated and produced sound in proof-of-concept air flow studies. This work represents a critical first step towards the design of a multi-layered, hydrogel scaffold for vocal fold tissue engineering.
Stereoscopic particle image velocimetry (SPIV) is a variant of particle image velocimetry (PIV) that allows for the measurement of three components of velocity along a plane in a flow field. In PIV, particles in the flow field are tracked by reflecting laser light from tracer particles into two angled cameras, allowing for the velocity field to be determined. Particle shadow velocimetry (PSV) is an inherently less expensive velocity measurement method since the method images shadows cast by particles from an LED backlight instead of scattered light from a laser. Previous studies have shown that PSV is an adequate substitute for PIV for many two-dimensional, two-component velocimetry measurements. In this work, the viability of the two-dimensional, three-component stereoscopic particle shadow velocimetry (SPSV) is demonstrated by using SPSV to examine a simple jet flow. Results obtained using SPIV are also used to provide benchmark comparison for SPSV measurements. Results show that in-plane and out-of-plane velocities measured using SPSV are comparable to those measured using SPIV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.