Herpes simplex virus type 1 (HSV-1) DNA has been shown to exist as a linear, double-stranded molecule in the virion and as a non-linear (endless), episomal, nucleosomal form in latently infected trigeminal ganglia. The kinetics of the formation and appearance of endless viral genomes and the stability of linear genomes in neuronal cells are not well understood. Nerve growth factor (NGF)-differentiated PC12 cells can sustain long-term, quiescent infections with HSV-1. In this report, the structure and stability of HSV-1 viral DNA in NGF-differentiated PC12 cells was studied as a function of time following infection using both wild-type and replication-defective virus. Unexpectedly, unencapsidated linear genomes were stable in the nucleus of NGF-differentiated PC12 cells for up to 2-3 weeks following infection, beyond the period at which there is no detectable viral gene expression. However, following infection with wild-type HSV, the majority of quiescent viral genomes were in an endless form after 3-4 weeks. These data suggest that the stability and fate of HSV-1 DNA in non-mitotic neuronal-like cells is different from that in productively infected cells and thus there is a significant cellular role in this process. The relevance to the virus life-cycle in neurones in vivo is discussed.
In tissue culture, rat pheochromocytoma (PC12) cells differentiated with nerve growth factor (NGF) cease division, extend neuritic processes and acquire many properties characteristic of neuronal cells. In previous work, we have shown that NGF-differentiated PC12 cells can survive infection with herpes simplex virus type 1 (HSV-1) and maintain the viral genome in a quiescent but reactivatable state. In this study, we report that uninfected NGF-differentiated PC12 cells uniformly and predictably detach from the culture flask substratum after approximately 7 weeks. Although uninfected cells were uniformly lost from the culture by 7 weeks, surprisingly HSV-1-infected cells survived beyond 10 weeks, the time limit of the study. The detachment of uninfected cells was not the result of cell death or apoptosis, as determined by viability assays performed on cells after detachment. Expression of the HSV-1 latency associated transcript (LAT) gene and virus replication was not necessary for the virus to suppress the ' detachment ' phenomenon, since NGFdifferentiated PC12 cells infected with either wild-type, DNA polymerase mutant or LAT null mutant virus survived in culture for similar lengths of time. Viral gene expression does appear to be necessary for the suppression, however, since cells infected with UV-inactivated virus were lost from culture with kinetics similar to those of uninfected cells. These findings indicate that de novo viral gene synthesis mediates changes to the host NGF-differentiated PC12 cells, which results in prevention of detachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.