Ets homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq), showed that the majority of EHF binding sites in lung epithelial cells are intergenic or intronic and coincide with putative enhancers, marked by specific histone modifications. EHF occupies many genomic sites that are close to genes involved in intercellular and cell–matrix adhesion. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. These changes in gene expression coincided with alterations in cellular phenotype including slowed wound closure and increased transepithelial resistance. Our data suggest that EHF regulates gene pathways critical for epithelial response to injury, including those involved in maintenance of barrier function, inflammation and efficient wound repair.
The airway epithelium forms a barrier between the internal and external environments. Epithelial dysfunction is critical in the pathology of many respiratory diseases, including cystic fibrosis. Ets homologous factor (EHF) is a key member of the transcription factor network that regulates gene expression in the airway epithelium in response to endogenous and exogenous stimuli. , which has altered expression in inflammatory states, maps to the 5' end of an intergenic region on Chr11p13 that is implicated as a modifier of cystic fibrosis airway disease. Here we determine the functions of EHF in primary human bronchial epithelial (HBE) cells and relevant airway cell lines. Using EHF ChIP followed by deep sequencing (ChIP-seq) and RNA sequencing after EHF depletion, we show that EHF targets in HBE cells are enriched for genes involved in inflammation and wound repair. Furthermore, changes in gene expression impact cell phenotype because EHF depletion alters epithelial secretion of a neutrophil chemokine and slows wound closure in HBE cells. EHF activates expression of the SAM pointed domain-containing ETS transcription factor, which contributes to goblet cell hyperplasia. Our data reveal a critical role for EHF in regulating epithelial function in lung disease.
Collagen XV (COLXV) is a secreted non-fibrillar collagen found within basement membrane (BM) zones of the extracellular matrix (ECM). Its ability to alter cellular growth in vitro and to reduce tumor burden and increase survival in vivo support a role as a tumor suppressor. Loss of COLXV during the progression of several aggressive cancers precedes basement membrane invasion and metastasis. The resultant lack of COLXV subjacent to the basement membrane and subsequent loss of its interactions with other proteins in this zone may directly impact tumor progression. Here we show that COLXV significantly reduces invasion of pancreatic adenocarcinoma cells through a collagen I (COLI) matrix. Moreover, we demonstrate that epithelial to mesenchymal transition (EMT) in these cells, which is recapitulated in vitro by cell scattering on a COLI substrate, is inhibited by over-expression of COLXV. We identify critical collagen-binding surface receptors on the tumor cells, including the discoidin domain receptor 1 (DDR1) and E-Cadherin (E-Cad), which interact with COLXV and appear to mediate its function. In the presence of COLXV, the intracellular redistribution of E-Cad from the cell periphery, which is associated with COLI-activated EMT, is inhibited and concurrently, DDR1 signaling is suppressed. Furthermore, continuous exposure of the pancreatic adenocarcinoma cells to high levels of COLXV suppresses endogenous levels of N-Cadherin (N-Cad). These data reveal a novel mechanism whereby COLXV can function as a tumor suppressor in the basement membrane zone.
Mutations in the cystic fibrosis transmembrane conductance regulator () gene cause the inherited disorder cystic fibrosis (CF). Lung disease is the major cause of CF morbidity, though expression levels are substantially lower in the airway epithelium than in pancreatic duct and intestinal epithelia, which also show compromised function in CF. Recently developed small molecule therapeutics for CF are highly successful for one specific mutation and have a positive impact on others. However, the low abundance of transcripts in the airway limits the opportunity for drugs to correct the defective substrate. Elucidation of the transcriptional mechanisms for the locus has largely focused on intragenic and intergenic tissue-specific enhancers and their activating -factors. Here, we investigate whether the low CFTR levels in the airway epithelium result from the recruitment of repressive proteins directly to the locus. Using an siRNA screen to deplete ∼1500 transcription factors (TFs) and associated regulatory proteins in Calu-3 lung epithelial cells, we identified nearly 40 factors that upon depletion elevated CFTR mRNA levels more than 2-fold. A subset of these TFs was validated in primary human bronchial epithelial cells. Among the strongest repressors of airway expression of were Krüppel-like factor 5 and Ets homologous factor, both of which have pivotal roles in the airway epithelium. Depletion of these factors, which are both recruited to an airway-selective -regulatory element at -35 kb from the promoter, improved CFTR production and function, thus defining novel therapeutic targets for enhancement of CFTR.
Ancient skeletal remains can harbor unique information about past civilizations at both the morphological and molecular levels. For instance, a number of diseases manifest in bone, some of which have been confirmed through DNA analysis, verifying their presence in ancient populations. In this study, anthropological analysis of skeletal remains from the ancient Albanian city of Butrint identified individuals with severe circular lytic lesions on their thoracic and lumbar vertebrae. Differential diagnosis suggested that the lesions resulted from pathologies known to affect these skeletal regions, such as tuberculosis (TB) or brucellosis. Relevant bones of two adolescent males from the 10th to 13th century AD that displayed the lesions, along with unaffected individuals, were collected in the field. Genetic screening of the skeletal samples for TB was repeatedly negative, thus additional testing for Brucella spp.-bacteria of livestock and the causative agent of brucellosis in humans-was conducted. Two Brucella DNA markers, the IS6501 insertion element and Bcsp31 gene, amplified from the affected vertebrae and/or ribs, whereas all unaffected individuals and control samples were negative. Subsequent DNA sequencing confirmed the presence of the brucellar IS6501 insertion element. On the basis of the skeletal lesions, negative tests for TB, and positive Brucella findings, we report a confirmed occurrence of brucellosis in archaeologically recovered human bone. These findings suggest that brucellosis has been endemic to the area since at least the Middle Ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.