The high-speed impact of a droplet onto a flexible substrate is a highly non-linear process of practical importance, which poses formidable modelling challenges in the context of fluid–structure interaction. We present two approaches aimed at investigating the canonical system of a droplet impacting onto a rigid plate supported by a spring and a dashpot: matched asymptotic expansions and direct numerical simulation (DNS). In the former, we derive a generalisation of inviscid Wagner theory to approximate the flow behaviour during the early stages of the impact. In the latter, we perform detailed DNS designed to validate the analytical framework, as well as provide insight into later times beyond the reach of the proposed analytical model. Drawing from both methods, we observe the strong influence that the mass of the plate, resistance of the dashpot, and stiffness of the spring have on the motion of the solid, which undergo forced damped oscillations. Furthermore, we examine how the plate motion affects the dynamics of the droplet, predominantly through altering its internal hydrodynamic pressure distribution. We build on the interplay between these techniques, demonstrating that a hybrid approach leads to improved model and computational development, as well as result interpretation, across multiple length and time scales.
In the field of crystallography, some crystals are not made of a single component but are instead twinned.In these cases, the observed intensities at some points in the lattice will be far larger than predictions. If we find the rotation associated to the twinned component, we can model this twin and improve our agreement with observations. In this report, we explore many routes to improve the process of identifying twins: Generation of fake data for better understanding and accurate testing. The representation of a rotation as defined by an axis and angle. The representation of a rotation as a quaternion. Using lattice points which must be equidistant from the origin to create our viable rotations. An algorithm focused on restricted possibilities. An exploration of 2D lattices for which twinning is mathematically impossible. We find that there is much to be investigated in the field of twinning.
In the field of crystallography, some crystals are not made of a single component but are instead twinned.In these cases, the observed intensities at some points in the lattice will be far larger than predictions. If we find the rotation associated to the twinned component, we can model this twin and improve our agreement with observations. In this report, we explore many routes to improve the process of identifying twins: Generation of fake data for better understanding and accurate testing. The representation of a rotation as defined by an axis and angle. The representation of a rotation as a quaternion. Using lattice points which must be equidistant from the origin to create our viable rotations. An algorithm focused on restricted possibilities. An exploration of 2D lattices for which twinning is mathematically impossible. We find that there is much to be investigated in the field of twinning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.