Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Electronic excitation energies are determined using the CAM-B3LYP Coulomb-attenuated functional ͓T. Yanai et al. Chem. Phys. Lett. 393, 51 ͑2004͔͒, together with a standard generalized gradient approximation ͑GGA͒ and hybrid functional. The degree of spatial overlap between the occupied and virtual orbitals involved in an excitation is measured using a quantity ⌳, and the extent to which excitation energy errors correlate with ⌳ is quantified. For a set of 59 excitations of local, Rydberg, and intramolecular charge-transfer character in 18 theoretically challenging main-group molecules, CAM-B3LYP provides by far the best overall performance; no correlation is observed between excitation energy errors and ⌳, reflecting the good quality, balanced description of all three categories of excitation. By contrast, a clear correlation is observed for the GGA and, to a lesser extent, the hybrid functional, allowing a simple diagnostic test to be proposed for judging the reliability of a general excitation from these functionals-when ⌳ falls below a prescribed threshold, excitations are likely to be in very significant error. The study highlights the ambiguous nature of the term "charge transfer," providing insight into the observation that while many charge-transfer excitations are poorly described by GGA and hybrid functionals, others are accurately reproduced.
We have explored the hypothesis that contractile agonists are important regulators of smooth muscle cell growth by examining the effects of one potent contractile agonist, angiotensin II (AII), on both cell proliferation and cellular hypertrophy. AII neither stimulated proliferation of cells made quiescent in a defined serum-free media nor augmented cell proliferation induced by serum or platelet-derived growth factor. However, AII did induce cellular hypertrophy of postconfluent quiescent cultures following 4 days of treatment, increasing smooth muscle cell protein content by 20% as compared with vehicle-treated controls. AII-induced hypertrophy was maximal at 1 microM, had an ED50 of 5 nM, and was blocked by the specific AII receptor antagonist Sar1,Ile8 AII. The cellular hypertrophy was due to an increase in protein synthesis, which was elevated within 6-9 hours following AII treatment, while no changes in protein degradation were apparent. AII was even more effective in inducing hypertrophy of subconfluent cultures, causing a 38% increase in protein content after 4 days of treatment (1 microM) and showing a maximal response at concentrations as low as 0.1 nM. Interestingly, in subconfluent cultures, AII treatment (1 microM, 4 days) was associated with a 50% increase in the fraction of cells with 4C DNA content with the virtual absence of cells in S-phase of the cell cycle, consistent with either arrest of cells in the G2 phase of the cell cycle or development of tetraploidy.(ABSTRACT TRUNCATED AT 250 WORDS)
The recently proposed CAM-B3LYP exchange-correlation energy functional, based on a partitioning of the r À1 12 operator in the exchange interaction into long-and short-range components, is assessed for the determination of molecular thermochemistry, structures, and second order response properties. Rydberg and charge transfer excitation energies and static electronic polarisabilities are notably improved over the standard B3LYP functional; classical reaction barriers also improve. Ionisation potentials, bond lengths, NMR shielding constants and indirect spin-spin coupling constants are comparable with the two functionals. CAM-B3LYP atomisation energies and diatomic harmonic vibrational wavenumbers are less accurate than those of B3LYP. Future research directions are outlined.
Singlet and triplet vertical excitation energies from time-dependent density functional theory (TDDFT) can be affected in different ways by the inclusion of exact exchange in hybrid or Coulomb-attenuated/range-separated exchange-correlation functionals; in particular, triplet excitation energies can become significantly too low. To investigate these issues, the explicit dependence of excitation energies on exact exchange is quantified for four representative molecules, paying attention to the effect of constant, short-range, and long-range contributions. A stability analysis is used to verify that the problematic TDDFT triplet excitations can be understood in terms of the ground state triplet instability problem, and it is proposed that a Hartree-Fock stability analysis should be used to identify triplet excitations for which the presence of exact exchange in the TDDFT functional is undesirable. The use of the Tamm-Dancoff approximation (TDA) significantly improves the problematic triplet excitation energies, recovering the correct state ordering in benzoquinone; it also affects the corresponding singlet states, recovering the correct state ordering in naphthalene. The impressive performance of the TDA is maintained for a wide range of molecules across representative functionals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.