A sequence of the form s 1 s 2 . . . s m s 1 s 2 . . . s m is called a repetition. A vertex-coloring of a graph is called nonrepetitive if none of its paths is repetitively colored. We answer a question of Grytczuk [Thue type problems for graphs, points and numbers, manuscript] by proving that every outerplanar graph has a nonrepetitive 12-coloring. We also show that graphs of tree-width t have nonrepetitive 4 t -colorings.
An edge in a drawing of a graph is called even if it intersects every other edge of the graph an even number of times. Pach and Tóth proved that a graph can always be redrawn so that its even edges are not involved in any intersections. We give a new and significantly simpler proof of the stronger statement that the redrawing can be done in such a way that no new odd intersections are introduced. We include two applications of this strengthened result: an easy proof of a theorem of Hanani and Tutte (the only proof we know of not to use Kuratowski's theorem), and the new result that the odd crossing number of a graph equals the crossing number of the graph for values of at most 3. The paper begins with a disarmingly simple proof of a weak (but standard) version of the theorem by Hanani and Tutte.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most dn(G )/ke vertices. A graph is equitably k-choosable if such a coloring exists whenever the lists all have size k. We prove that G is equitably k-choosable when k ! maxfÁ(G ),n(G )/ ------------------
Kostochka and West
A drawing of a graph is x-monotone if every edge intersects every vertical line at most once and every vertical line contains at most one vertex. Pach and Tóth showed that if a graph has an x-monotone drawing in which every pair of edges crosses an even number of times, then the graph has an x-monotone embedding in which the x-coordinates of all vertices are unchanged. We give a new proof of this result and strengthen it by showing that the conclusion remains true even if adjacent edges are allowed to cross each other oddly. This answers a question posed by Pach and Tóth. We show that a further strengthening to a "removing even crossings" lemma is impossible by separating monotone versions of the crossing and the odd crossing number.Our results extend to level-planarity, which is a well-studied generalization of x-monotonicity. We obtain a new and simple algorithm to test level-planarity in quadratic time, and we show that x-monotonicity of edges in the definition of level-planarity can be relaxed.
In 1996, Matheson and Tarjan conjectured that any n-vertex plane triangulation with n sufficiently large has a dominating set of size at most n/4. We prove this for graphs of maximum degree 6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.