Tandem mass spectrometry (MS/MS) is increasingly applied to synthetic polymers to characterize chain-end or in-chain substituents, distinguish isobaric and isomeric species, and determine macromolecular connectivities and architectures. For confident structural assignments, the fragmentation mechanisms of polymer ions must be understood, as they provide guidelines on how to deduce the desired information from the fragments observed in MS/MS spectra. This article reviews the fragmentation pathways of synthetic polymer ions that have been energized to decompose via collisionally activated dissociation (CAD), the most widely used activation method in polymer analysis. The compounds discussed encompass polystyrenes, poly(2-vinyl pyridine), polyacrylates, poly(vinyl acetate), aliphatic polyester copolymers, polyethers, and poly(dimethylsiloxane). For a number of these polymers, several substitution patterns and architectures are considered, and questions regarding the ionization agent and internal energy of the dissociating precursor ions are also addressed. Competing and consecutive dissociations are evaluated in terms of the structural insight they provide about the macromolecular structure. The fragmentation pathways of the diverse array of polymer ions examined fall into three categories, viz. (1) charge-directed fragmentations, (2) charge-remote rearrangements, and (3) charge-remote fragmentations via radical intermediates. Charge-remote processes predominate. Depending on the ionizing agent and the functional groups in the polymer, the incipient fragments arising by pathways (1)-(3) may form ion-molecule complexes that survive long enough to permit inter-fragment hydrogen atom, proton, or hydride transfers.
The dissociation of the amide (peptide) bond in protonated peptides, [M + H](+), is discussed in terms of the structures and energetics of the resulting N-terminal b(n) and C-terminal y(n) sequence ions. The combined data provide strong evidence that dissociation proceeds with no reverse barriers through interconverting proton-bound complexes between the segments emerging upon cleavage of the protonated peptide bond. These complexes contain the C-terminal part as a smaller linear peptide (amino acid if one residue) and the N-terminal part either as an oxazolone or a cyclic peptide (cyclic amide if one residue). Owing to the higher thermodynamic stability but substantially lower gas-phase basicity of cyclic peptides vs isomeric oxazolones, the N-terminus is cleaved as a protonated oxazolone when ionic (b(n) series) but as a cyclic peptide when neutral (accompanying the C-terminal y(n) series). It is demonstrated that free energy correlations can be used to derive thermochemical data about sequence ions. In this context, the dependence of the logarithm of the abundance ratio log[y(1)/b(2)], from protonated GGX (G, glycine; X, varying amino acid) on the gas-phase basicity of X is used to obtain a first experimental estimate of the gas-phase basicity of the simplest b-type oxazolone, viz. 2-aminomethyl-5-oxazolone (b(2) ion with two glycyl residues).
The neutral species eliminated upon fragmentation of fast‐moving mass‐selected ions can be directly identified by collisional ionization and detection in neutral fragment reionization (NfR) mass spectra. Establishment of the identity of neutral fragments yields valuable insight into the decomposition mechanism of a precursor ion, as demonstrated for fullerene and alkali metal iodide cluster ions as well as metal ion adducts of amino acids. In addition, neutral fragment reionization also provides structural information that may not be available from the complementary ionic fragments alone; this is illustrated in the differentiation of isomeric mononucleotides. The parameters influencing the appearance of NfR spectra are discussed and the scope and general applicability of the method are briefly evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.