In a recent study, the well documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells, but not the “normal” breast cell line MCF-10A. Further, the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, was found not to target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study was the issue of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting, as well as the possible cellular uptake of the disaccharide. In the present study, we have conjugated BLM, deglycoBLM and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells, and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreas cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells, and comparable to BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.
The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.
Recently, we reported that both bleomycin (BLM) and its disaccharide, conjugated to the cyanine dye Cy5**, bound selectively to cancer cells. Thus, the disaccharide moiety alone recapitulates the tumor cell targeting properties of BLM. Here, we demonstrate that the conjugate of the BLM carbamoylmannose moiety with Cy5** showed tumor cell selective binding and also enhanced cellular uptake in most cancer cell lines. The carbamoyl functionality was required for tumor cell targeting. A dye conjugate prepared from a trivalent cluster of carbamoylmannose exhibited levels of tumor cell binding and internalization significantly greater than those of the simple carbamoylmannose–dye conjugate, consistent with a possible multivalent receptor.
The cystine transporter (system xC−) is an antiporter of cystine and glutamate. It has relatively low basal expression in most tissues and becomes upregulated in cells under oxidative stress (OS) as one of the genes expressed in response to the antioxidant response element (ARE) promoter. We have developed 18F-5-fluoro-aminosuberic acid (FASu), a Positron Emission Tomography (PET) tracer that targets system xC−. The goal of this study was to evaluate 18F-FASu as a specific gauge for system xC− activity in vivo and its potential for breast cancer imaging. Methods 18F-FASu specificity towards system xC− was studied by cell inhibition assay, cellular uptake following OS induction with diethyl maleate (DEM), with and without anti-xCT siRNA knockdown, in vitro uptake studies and in vivo uptake in a system xC− transduced xenograft model. In addition, radiotracer uptake was evaluated in three separate breast cancer models MDA-MB-231, MCF-7 and ZR-75-1. Results Reactive oxygen species (ROS)-inducing DEM increased glutathione levels and 18F-FASu uptake, while gene knockdown with anti-xCT siRNA led to decreased tracer uptake. 18F-FASu uptake was robustly inhibited by system xC− inhibitors or substrates, while the uptake was significantly higher in transduced cells and tumors expressing xCT compared to the wild type HEK293T cells and tumors (p<0.0001 for cells, p=0.0086 for tumors). 18F-FASu demonstrated tumor uptake in all three breast cancer cell lines studied. Among them, triple negative breast cancer MDA-MB-231 had the highest tracer uptake (p=0.0058 when compared with MCF-7; p<0.0001 when compared with ZR-75-1), which also has the highest xCT mRNA level. Conclusions 18F-FASu as a system xC− substrate is a specific PET tracer for functional monitoring of system xC− and OS imaging. By enabling non-invasive analysis of xC− responses in vivo, this biomarker may serve as a valuable target for the diagnosis and treatment monitoring of certain breast cancers.
The bleomycins (BLMs) are structurally related glycopeptide antibiotics isolated from Streptomyces verticillus that mediate the sequence-selective oxidative damage of DNA and RNA. Deglycobleomycin, which lacks the carbohydrate moiety, cleaves DNA analogously to bleomycin itself, albeit less potently, and has been used successfully for analyzing the functional domains of bleomycin. Although structural modifications to bleomycin and deglycobleomycin have been reported, no bleomycin or deglycobleomycin analogue having enhanced DNA cleavage activity has yet been described. The successful synthesis of a deglycobleomycin on a solid support has permitted the facile solid-phase synthesis of 108 unique deglycobleomycin analogues through parallel solid-phase synthesis. Each of the deglycobleomycin analogues was synthesized efficiently; the purity of each crude product was greater than 60%, as determined by HPLC integration. The solid-phase synthesis of the deglycobleomycin library provided near-milligram to milligram quantities of each deglycobleomycin, thereby permitting characterization by (1)H NMR and high-resolution mass spectrometry. Each analogue demonstrated supercoiled plasmid DNA relaxation above background cleavage; the library included two analogues that mediated plasmid relaxation to a greater extent than the parent deglycobleomycin molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.