Gridded SST products developed particularly for offshore regions are increasingly being applied close to the coast for biogeographical applications. The purpose of this paper is to demonstrate the dangers of doing so through a comparison of reprocessed MODIS Terra and Pathfinder v5.2 SSTs, both at 4 km resolution, with instrumental in situ temperatures taken within 400 m from the coast. We report large biases of up to +6°C in places between satellite-derived and in situ climatological temperatures for 87 sites spanning the entire ca. 2 700 km of the South African coastline. Although biases are predominantly warm (i.e. the satellite SSTs being higher), smaller or even cold biases also appear in places, especially along the southern and western coasts of the country. We also demonstrate the presence of gradients in temperature biases along shore-normal transects — generally SSTs extracted close to the shore demonstrate a smaller bias with respect to the in situ temperatures. Contributing towards the magnitude of the biases are factors such as SST data source, proximity to the shore, the presence/absence of upwelling cells or coastal embayments. Despite the generally large biases, from a biogeographical perspective, species distribution retains a correlative relationship with underlying spatial patterns in SST, but in order to arrive at a causal understanding of the determinants of biogeographical patterns we suggest that in shallow, inshore marine habitats, temperature is best measured directly.
Chokka squid biomass and catch are highly variable, likely owing to their links to changes in the ecosystem, which impact spawning and recruitment. A synthesis of basic ecosystem components for the domain in which chokka squid live (i.e. South Africa's west coast and Agulhas Bank) was prepared using published and new data. It included bottom temperature, bottom dissolved oxygen, chlorophyll, and copepod abundance. Alongshore gradients of these indicated that the main spawning grounds on the eastern Agulhas Bank are positioned where bottom temperature and bottom dissolved oxygen are optimal for embryonic development. This location, however, appears suboptimal for hatchlings because the copepod maximum (food for paralarvae) is typically on the central Agulhas Bank some 200 km to the west. Data on currents suggest that this constraint may be overcome by the existence of a net west-flowing shelf current on the eastern Agulhas Bank, improving survivorship of paralarvae by transporting them passively towards the copepod maximum. CTD data and a temporal analysis of AVHRR satellite imagery reveal the copepod maximum to be supported by a “cold ridge”, a mesoscale upwelling filament present during summer when squid spawning peaks. In situ sea surface temperature (SST) data used as a proxy for cold ridge activity demonstrate considerable interannual variability of the feature, especially during El Niño-Southern Oscillation events. Negative linear correlations between maximum summer SST (monthly average) and squid biomass the following autumn (r2 = 0.94), and annual catch (r2 = 0.69), support the link between the “cold ridge–copepod maximum” and the early life cycle of chokka squid, and holds promise for prediction.
Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO
2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.