Age‐related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown. Here we demonstrate that under homeostatic conditions extracellular vesicles (EVs) secreted by retinal pigment epithelium (RPE) cells are enriched in proteins associated with mechanisms involved in AMD pathophysiology, including oxidative stress, immune response, inflammation, complement system and drusen composition. Furthermore, we provide first evidence that drusen‐associated proteins are released as cargo of extracellular vesicles secreted by RPE cells in a polarised apical:basal mode. Notably, drusen‐associated proteins exhibited distinctive directional secretion modes in homeostatic conditions and, differential modulation of this directional secretion in response to AMD stressors. These observations underpin the existence of a finely‐tuned mechanism regulating directional apical:basal sorting and secretion of drusen‐associated proteins via EVs, and its modulation in response to mechanisms involved in AMD pathophysiology. Collectively, our results strongly support an active role of RPE‐derived EVs as a key source of drusen proteins and important contributors to drusen development and growth.
In 2014, the United States (US) experienced an unprecedented epidemic of enterovirus D68 (EV-D68)-induced respiratory disease that was temporally associated with the emergence of acute flaccid myelitis (AFM), a paralytic disease occurring predominantly in children, that has a striking resemblance to poliomyelitis. Although a definitive causal link between EV-D68 infection and AFM has not been unequivocally established, rapidly accumulating clinical, immunological, and epidemiological evidence points to EV-D68 as the major causative agent of recent seasonal childhood AFM outbreaks in the US. This review summarizes evidence, gained from in vivo and in vitro models of EV-D68-induced disease, which demonstrates that contemporary EV-D68 strains isolated during and since the 2014 outbreak differ from historical EV-D68 in several factors influencing neurovirulence, including their genomic sequence, their receptor utilization, their ability to infect neurons, and their neuropathogenicity in mice. These findings provide biological plausibility that EV-D68 is a causal agent of AFM and provide important experimental models for studies of pathogenesis and treatment that are likely to be difficult or impossible in humans.
Iron deficiency (ID) affects more than three billion people worldwide making it the most common micronutrient deficiency. ID is most prevalent during gestation and early life, which is of particular concern since its impact on the developing central nervous system is associated with an increased risk of a wide range of different psychiatric disorders later in life. The cause for this association is not known, but many of these same disorders are also associated with an imbalance between excitation and inhibition (E/I) within the brain. Based on this shared impairment, we asked whether ID could contribute to such an imbalance. Disruptions in the E/I balance can be uncovered by the brain’s response to seizure inducing insults. We therefore tested the seizure threshold under different nutritional models of ID. We found that mice which were postnatally exposed to ID (and were acutely ID) had a decreased seizure threshold and increased susceptibility to certain seizure types. In contrast, mice that were exposed to ID only during gestation had an increased seizure threshold and low seizure incidence. We suggest that exposure to ID during gestation might alter the cellular components that contribute to the establishment of a proper E/I balance later in life. In addition, our data highlight the importance of considering the window of vulnerability since gestational ID and postnatal ID have significantly different consequences on seizure probability.
Enterovirus D68 (EV-D68) can cause mild to severe respiratory illness and is associated with a poliomyelitis-like paralytic syndrome called acute flaccid myelitis (AFM). Most cases of EV-D68-associated AFM occur in young children who are brought to the clinic after the onset of neurologic symptoms.
Despite the strong causal link between enterovirus D68 (EV-D68) and acute flaccid myelitis (AFM), it remains unclear how EV-D68 gains entry into the central nervous system and what receptors enable it to infect motor neurons. We show that EV-D68 particles can adhere to exosomes, placing EV-D68 among a handful of other picornaviruses which are known to interact with extracellular vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.