This article illustrates the use of unsupervised probabilistic learning techniques for the analysis of planetary reentry trajectories. A three-degree-of-freedom model was employed to generate optimal trajectories that comprise the training datasets. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. We find that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. Using the diffusion coordinates on the graph of training samples, the probabilistic framework subsequently augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path planning algorithm. In this framework, the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.