Head impulse test (HIT) with high acceleration reveals vestibulo-ocular reflex deficits better and elicits larger overt catch-up saccades in unilateral vestibular patients. Covert saccades during head rotation, however, occur more frequently with higher acceleration and may be missed by clinicians. To avoid false-negative results, bedside HIT should be repeated to improve chances of detection.
This paper provides a theoretical foundation for efficient interior-point algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are self-scaled. For such problems we devise long-step and symmetric primal-dual methods. Because of the special properties of these cones and barriers, our algorithms can take steps that go typically a large fraction of the way to the boundary of the feasible region, rather than being confined to a ball of unit radius in the local norm defined by the Hessian of the barrier.
Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the strongest column, checking the stability of a differential inclusion, and obtaining tight bounds for hard combinatorial optimization problems. Part also derives from great advances in our ability to solve such problems efficiently in theory and in practice (perhaps "or" would be more appropriate: the most effective computational methods are not always provably efficient in theory, and vice versa). Here we describe this class of optimization problems, give a number of examples demonstrating its significance, outline its duality theory, and discuss algorithms for solving such problems. *
In this paper we continue the development of a theoretical foundation for efficient primal-dual interior-point algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are self-scaled (see [NT97]). The class of problems under consideration includes linear programming, semidefinite programming and convex quadratically constrained quadratic programming problems. For such problems we introduce a new definition of affine-scaling and centering directions. We present efficiency estimates for several symmetric primal-dual methods that can loosely be classified as path-following methods. Because of the special properties of these cones and barriers, two of our algorithms can take steps that go typically a large fraction of the way to the boundary of the feasible region, rather than being confined to a ball of unit radius in the local norm defined by the Hessian of the barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.