Deletion of the human SHANK3 gene near the terminus of chromosome 22q is associated with Phelan-McDermid syndrome and autism spectrum disorders. Nearly all such deletions also span the tightly linked IB2 gene. We show here that IB2 protein is broadly expressed in the brain and is highly enriched within postsynaptic densities. Experimental disruption of the IB2 gene in mice reduces AMPA and enhances NMDA receptor-mediated glutamatergic transmission in cerebellum, changes the morphology of Purkinje cell dendritic arbors, and induces motor and cognitive deficits suggesting an autism phenotype. These findings support a role for human IB2 mutation as a contributing genetic factor in Chr22qter-associated cognitive disorders.
Endocannabinoids released by postsynaptic neurons inhibit neurotransmitter release from presynaptic axon terminals. One typical stimulus of endocannabinoid production is an increase of calcium concentration in postsynaptic neurons. The aim of the present study was to clarify whether depolarizing GABAergic synaptic input, by increasing calcium concentration in postsynaptic neurons, can trigger endocannabinoid production. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in Purkinje cells in mouse cerebellar slices with patch-clamp pipettes containing 151 mM chloride (a usual recording mode). sIPSCs were depolarizing inward currents under this condition. Combined electrophysiological and fluorometric calcium imaging experiments indicated that sIPSCs frequently triggered calcium spikes. After the calcium spikes, a short-term suppression of sIPSCs occurred. This suppression was prevented by the CB(1) cannabinoid receptor antagonist rimonabant and the diacylglycerol lipase inhibitor orlistat, but not changed by URB597, an inhibitor of anandamide degradation. It is, therefore, likely that CB(1) receptors and 2-arachidonoylglycerol were involved. For testing the physiological significance of the above observation, we carried out experiments on brains of 3- to 5-day-old mice. The gramicidin-induced perforated patch-clamp mode was used for preserving the physiological intracellular chloride concentration of the neurons. Depolarizing GABAergic sIPSCs occurred under this condition, but at a very low rate. Rimonabant did not change the frequency of these sIPSCs, arguing against the persistence of an endocannabinoid tone. The results point to a new kind of trigger of endocannabinoid production: depolarizing GABAergic synaptic input can elicit endocannabinoid production in postsynaptic neurons by activating calcium channels. The produced endocannabinoid suppresses GABA release from presynaptic axon terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.