Light-absorbing organic aerosols, optically defined as brown carbon (BrC), have been shown to strongly absorb short visible solar wavelengths and significantly impact Earth's radiative energy balance. There currently exists a knowledge gap regarding the potential impacts of atmospheric processing on the absorptivity of such particles generated from biomass burning. Climate models and satellite retrieval algorithms parametrize the optical properties of BrC aerosols emitted from biomass burning events as unchanging throughout their atmospheric lifecycle. Here, using contact-free optical probing techniques, we investigate the effects of multiple-day photochemical oxidation on the spectral (375−532 nm) optical properties of primary BrC aerosols emitted from smoldering combustion of boreal peatlands. We find the largest effects of oxidation in the near-UV wavelengths, with the 375 nm imaginary refractive index and absorption coefficients of BrC particles decreasing by ∼36% and 46%, respectively, and an increase in their single scattering albedo from 0.85 to 0.90. Based on simultaneous chemical characterization of particles, we infer a transition from functionalization to fragmentation reactions with increasing photooxidation. Simple radiative forcing efficiency calculations show the effects of aging on atmospheric warming attributed to BrC aerosols, which could be significant over snow and other reflective surfaces.
Bev was well tolerated at this dose and prolonged disease stabilization was achieved in one-quarter of metastatic melanoma patients. Low-dose IFN-alpha2b did not augment the activity of Bev.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.