Many approaches to geoacoustic inversion are based implicitly on the assumptions that data errors are Gaussian-distributed and spatially uncorrelated (i.e., have a diagonal covariance matrix). However, the latter assumption is often not valid due to theory errors, and can lead to reduced accuracy for geoacoustic parameter estimates and underestimation of parameter uncertainties. This paper examines the effects of data error (residual) covariance in matched-field geoacoustic inversion. An inversion approach is developed based on a nonparametric method of estimating the full covariance matrix (including off-diagonal terms) from the data residuals and explicitly including this covariance in the misfit function. Qualitative and quantitative statistical tests for Gaussianity and for correlations in complex residuals are considered to validate the inversion results. The approach is illustrated for Bayesian geoacoustic inversion of broadband, vertical-array acoustic data measured in the Mediterranean Sea.
This paper develops a Bayesian approach for two related inverse problems: tracking an acoustic source when ocean environmental parameters are unknown, and determining environmental parameters using acoustic data from an unknown (moving) source. The formulation considers source and environmental parameters as unknown random variables constrained by noisy acoustic data and by prior information on parameter values (e.g., physical limits for environmental properties) and on inter-parameter relationships (limits on radial and vertical source speed). The goal is not simply to estimate parameter values, but to rigorously determine parameter uncertainty distributions, thereby quantifying the information content of the data/prior to resolve source and environmental parameters. Results are presented as marginal posterior probability densities (PPDs) for environmental parameters and joint marginal PPDs for source ranges and depths. Given the numerically intensive inversion, an efficient Markov-chain Monte Carlo importance-sampling approach is developed which combines Metropolis and heat-bath Gibbs' sampling, employs efficient proposal distributions based on a linearized PPD approximation, and considers nonunity sampling temperatures to ensure a complete parameter search. The approach is illustrated with two simulated examples representing tracking a quiet submerged source and geoacoustic inversion using noise from an unknown ship of opportunity. In both cases, source, seabed, and water-column parameters are unknown.
This paper considers simultaneous localization of multiple acoustic sources when properties of the ocean environment (water column and seabed) are poorly known. A Bayesian formulation is developed in which the environmental parameters, noise statistics, and locations and complex strengths (amplitudes and phases) of multiple sources are considered to be unknown random variables constrained by acoustic data and prior information. Two approaches are considered for estimating source parameters. Focalization maximizes the posterior probability density (PPD) over all parameters using adaptive hybrid optimization. Marginalization integrates the PPD using efficient Markov-chain Monte Carlo methods to produce joint marginal probability distributions for source ranges and depths, from which source locations are obtained. This approach also provides quantitative uncertainty analysis for all parameters, which can aid in understanding of the inverse problem and may be of practical interest (e.g., source-strength probability distributions). In both approaches, closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Examples are presented of both approaches applied to single- and multi-frequency localization of multiple sources in an uncertain shallow-water environment, and a Monte Carlo performance evaluation study is carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.