Obesity and type 2 diabetes are emerging global epidemics associated with chronic, low-grade inflammation. A characteristic feature of type 2 diabetes is delayed wound healing, which increases the risk of recurrent infections, tissue necrosis, and limb amputation. In health, inflammation is actively resolved by endogenous mediators, such as the resolvins. D-series resolvins are generated from docosahexaenoic acid (DHA) and promote macrophage-mediated clearance of microbes and apoptotic cells. However, it is not clear how type 2 diabetes affects the resolution of inflammation. Here, we report that resolution of acute peritonitis is delayed in obese diabetic (db/db) mice. Altered resolution was associated with decreased apoptotic cell and Fc receptor–mediated macrophage clearance. Treatment with resolvin D1 (RvD1) enhanced resolution of peritonitis, decreased accumulation of apoptotic thymocytes in diabetic mice, and stimulated diabetic macrophage phagocytosis. Conversion of DHA to monohydroxydocosanoids, markers of resolvin biosynthesis, was attenuated in diabetic wounds, and local application of RvD1 accelerated wound closure and decreased accumulation of apoptotic cells and macrophages in the wounds. These findings support the notion that diabetes impairs resolution of wound healing and demonstrate that stimulating resolution with proresolving lipid mediators could be a novel approach to treating chronic, nonhealing wounds in patients with diabetes.
Gendicine (recombinant human p53 adenovirus), developed by Shenzhen SiBiono GeneTech Co. Ltd., was approved in 2003 by the China Food and Drug Administration (CFDA) as a first-in-class gene therapy product to treat head and neck cancer, and entered the commercial market in 2004. Gendicine is a biological therapy that is delivered via minimally invasive intratumoral injection, as well as by intracavity or intravascular infusion. The wild-type (wt) p53 protein expressed by Gendicine-transduced cells is a tumor suppressor that is activated by cellular stress, and mediates cell-cycle arrest and DNA repair, or induces apoptosis, senescence, and/or autophagy, depending upon cellular stress conditions. Based on 12 years of commercial use in >30,000 patients, and >30 published clinical studies, Gendicine has exhibited an exemplary safety record, and when combined with chemotherapy and radiotherapy has demonstrated significantly higher response rates than for standard therapies alone. In addition to head and neck cancer, Gendicine has been successfully applied to treat various other cancer types and different stages of disease. Thirteen published studies that include long-term survival data showed that Gendicine combination regimens yield progression-free survival times that are significantly longer than standard therapies alone. Although the p53 gene is mutated in >50% of all human cancers, p53 mutation status did not significantly influence efficacy outcomes and long-term survival rate for Ad-p53-treated patients. To date, Shenzhen SiBiono GeneTech has manufactured 41 batches of Gendicine in compliance with CFDA QC/QA requirements, and 169,571 vials (1.0 × 10 vector particles per vial) have been used to treat patients. No serious adverse events have been reported, except for vector-associated transient fever, which occurred in 50-60% of patients and persisted for only a few hours. The manufacturing accomplishments and clinical experience with Gendicine, as well as the understanding of its cellular mechanisms of action and implications, could provide valuable insights for the international gene therapy community and add valuable data to promote further developments and advancements in the gene therapy field.
Omega-3 polyunsaturated fatty acids (PUFAs) are essential to health, and deficiencies in these PUFAs are linked to chronic disease. Although important insights into the diverse biological roles of PUFAs have been made, the mechanistic basis underlying their protective actions is still emerging. Studies over the past decade have elucidated that omega-3 PUFAs are enzymatically converted into bioactive autacoids that have inflammation-resolving properties. Among these, resolvins have emerged as an important family that has potent and stereospecific immunomodulatory roles, elucidation of which has contributed to a growing body of literature demonstrating that resolution of acute inflammation is an active process. In addition to their direct interactions with immune cells, resolvins have effects on nonimmune cells as well, suggesting a much broader role in biological systems than originally appreciated. In this review, we describe the endogenous biosynthesis and immunomodulatory actions of resolvins and highlight their emerging roles in health and disease.
Background Resolvins are lipid mediators generated by leukocytes during the resolution phase of inflammation. They have been shown to regulate the transition from inflammation to tissue repair; however, it is unknown whether resolvins play a role in tissue revascularization following ischemia. Methods We used a murine model of hind limb ischemia (HLI), coupled with laser Doppler perfusion imaging, micro computed tomography (microCT) and targeted mass spectrometry, to assess the role of resolvins in revascularization and inflammation-resolution. Results In mice undergoing HLI, we identified resolvin D2 (RvD2) in bone marrow and skeletal muscle by mass spectrometry (n=4-7 per group). We also identified RvD2 in skeletal muscle biopsies from humans with peripheral artery disease. Monocytes were recruited to skeletal muscle during HLI and isolated monocytes produced RvD2 in a lipoxygenase-dependent manner. Exogenous RvD2 enhanced perfusion recovery in HLI and microCT of limb vasculature revealed greater volume, with evidence of tortuous arterioles indicative of arteriogenesis (n=6-8 per group). Unlike other treatment strategies for therapeutic revascularization that exacerbate inflammation, RvD2 did not increase vascular permeability, but reduced neutrophil accumulation and the plasma levels of TNF-α and GM-CSF. In mice treated with RvD2, histopathological analysis of skeletal muscle of ischemic limbs showed more regenerating myocytes with centrally located nuclei. RvD2 enhanced endothelial cell migration in a Rac-dependent manner, via its receptor, GPR18, and Gpr18-deficient mice had an endogenous defect in perfusion recovery following HLI. Importantly, RvD2 rescued defective revascularization in diabetic mice. Conclusions RvD2 stimulates arteriogenic revascularization during HLI suggesting that resolvins may be a novel class of mediators that both resolve inflammation and promote arteriogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.