Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound (eBMD) in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with eBMD, in ~1.2M individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds-ratio=58, p=10 −75 ) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice lacking target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (p<0.0001). In-depth analysis of one gene, DAAM2 , showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence testing how to link associated-SNPs to causal genes, offers new insights into osteoporosis pathophysiology and highlights opportunities for drug development.
Despite the recent expansion of peptide drugs, delivery remains a challenge due to poor localization and rapid clearance. Therefore, a hydrogel-based platform technology was developed to control and sustain peptide drug release via matrix metalloproteinase (MMP) activity. Specifically, hydrogels were composed of poly(ethylene glycol) and peptide drugs flanked by MMP substrates and terminal cysteine residues as crosslinkers. First, peptide drug bioactivity was investigated in expected released forms (e.g., with MMP substrate residues) in vitro prior to incorporation into hydrogels. Three peptides (Qk (from Vascular Endothelial Growth Factor), SPARC113, and SPARC118 (from Secreted Protein Acidic and Rich in Cysteine)) retained bioactivity and were used as hydrogel crosslinkers in full MMP degradable forms. Upon treatment with MMP2, hydrogels containing Qk, SPARC113, and SPARC118 degraded in 6.7, 6 and 1 days, and released 5, 8 and, 19% of peptide, respectively. Further investigation revealed peptide drug size controlled hydrogel swelling and degradation rate, while hydrophobicity impacted peptide release. Additionally, degraded Qk, SPARC113, and SPARC118 releasing hydrogels increased endothelial cell tube formation 3.1, 1.7, and 2.8-fold, respectively. While pro-angiogenic peptides were the focus of this study, the design parameters detailed allow for adaptation of hydrogels to control peptide release for a variety of therapeutic applications.
Osteoporosis is a common debilitating chronic disease diagnosed primarily using bone mineral density (BMD). We undertook a comprehensive assessment of human genetic determinants of bone density in 426,824 individuals, identifying a total of 518 genome-wide significant loci, (301 novel), explaining 20% of the total variance in BMD—as estimated by heel quantitative ultrasound (eBMD). Next, meta-analysis identified 13 bone fracture loci in ~1.2M individuals, which were also associated with BMD. We then identified target genes from cell-specific genomic landscape features, including chromatin conformation and accessible chromatin sites, that were strongly enriched for genes known to influence bone density and strength (maximum odds ratio = 58, P = 10−75). We next performed rapid throughput skeletal phenotyping of 126 knockout mice lacking eBMD Target Genes and showed that these mice had an increased frequency of abnormal skeletal phenotypes compared to 526 unselected lines (P < 0.0001). In-depth analysis of one such Target Gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This comprehensive human and murine genetic atlas provides empirical evidence testing how to link associated SNPs to causal genes, offers new insights into osteoporosis pathophysiology and highlights opportunities for drug development.
In the version of this article initially published, the name of author Wai Yan Yau was misspelled. The error has been corrected in the HTML and PDF versions of the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.