Background Chest x-ray is a relatively accessible, inexpensive, fast imaging modality that might be valuable in the prognostication of patients with COVID-19. We aimed to develop and evaluate an artificial intelligence system using chest x-rays and clinical data to predict disease severity and progression in patients with COVID-19. Methods We did a retrospective study in multiple hospitals in the University of Pennsylvania Health System in Philadelphia, PA, USA, and Brown University affiliated hospitals in Providence, RI, USA. Patients who presented to a hospital in the University of Pennsylvania Health System via the emergency department, with a diagnosis of COVID-19 confirmed by RT-PCR and with an available chest x-ray from their initial presentation or admission, were retrospectively identified and randomly divided into training, validation, and test sets (7:1:2). Using the chest x-rays as input to an EfficientNet deep neural network and clinical data, models were trained to predict the binary outcome of disease severity (ie, critical or non-critical). The deep-learning features extracted from the model and clinical data were used to build time-to-event models to predict the risk of disease progression. The models were externally tested on patients who presented to an independent multicentre institution, Brown University affiliated hospitals, and compared with severity scores provided by radiologists. Findings 1834 patients who presented via the University of Pennsylvania Health System between March 9 and July 20, 2020, were identified and assigned to the model training (n=1285), validation (n=183), or testing (n=366) sets. 475 patients who presented via the Brown University affiliated hospitals between March 1 and July 18, 2020, were identified for external testing of the models. When chest x-rays were added to clinical data for severity prediction, area under the receiver operating characteristic curve (ROC-AUC) increased from 0·821 (95% CI 0·796–0·828) to 0·846 (0·815–0·852; p<0·0001) on internal testing and 0·731 (0·712–0·738) to 0·792 (0·780–0 ·803; p<0·0001) on external testing. When deep-learning features were added to clinical data for progression prediction, the concordance index (C-index) increased from 0·769 (0·755–0·786) to 0·805 (0·800–0·820; p<0·0001) on internal testing and 0·707 (0·695–0·729) to 0·752 (0·739–0·764; p<0·0001) on external testing. The image and clinical data combined model had significantly better prognostic performance than combined severity scores and clinical data on internal testing (C-index 0·805 vs 0·781; p=0·0002) and external testing (C-inde 0·752 vs 0·715; p<0·0001). Interpretation In patients with COVID-19, artificial intelligence based on chest x-rays had better prognostic performance than clinical data or radiologist-derived severity scores. Using artificial intelligence, chest x-rays can augment clinical data i...
Background Messenger RNA (mRNA) coronavirus disease of 2019 (COVID-19) vaccine are known to cause minor side effects at the injection site and mild global systemic symptoms in first 24–48 h. Recently published case series have reported a possible association between acute myocarditis and COVID-19 vaccination, predominantly in young males. Methods We report a case series of 5 young male patients with cardiovascular magnetic resonance (CMR)-confirmed acute myocarditis within 72 h after receiving a dose of an mRNA-based COVID-19 vaccine. Results Our case series suggests that myocarditis in this setting is characterized by myocardial edema and late gadolinium enhancement in the lateral wall of the left ventricular (LV) myocardium, reduced global LV longitudinal strain, and preserved LV ejection fraction. All patients in our series remained clinically stable during a relatively short inpatient hospital stay. Conclusions In conjunction with other recently published case series and national vaccine safety surveillance data, this case series suggests a possible association between acute myocarditis and COVID-19 vaccination in young males and highlights a potential pattern in accompanying CMR abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.