NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd 0.9 Zn 0.1 Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution roomtemperature radiation detectors due to their high dark resistivity (r % 2.8 3 10 11 V cm), good charge-transport properties [electron and hole mobility-lifetime product, mt e % (2-5) 3 10 ÿ 3 and mt h % (3-5) 3 10 ÿ 5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ;3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241 Am and 137 Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.
The diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae regulates the expression of the gene on corynebacteriophages that encodes diphtheria toxin (DT). Other genes regulated by DtxR include those that encode proteins involved in siderophore-mediated iron uptake. DtxR requires activation by divalent metals and holo-DtxR is a dimeric regulator with two distinct metal-binding sites per three-domain monomer. At site 1, three side chains and a sulfate or phosphate anion are involved in metal coordination. In the DtxR-DNA complex this anion is replaced by the side chain of Glu170 provided by the third domain of the repressor. At site 2 the metal ion is coordinated exclusively by constituents of the polypeptide chain. In this paper, five crystal structures of three DtxR variants focusing on residues Glu20, Arg80 and Cys102 are reported. The resolution of these structures ranges from 2.3 to 2.8 A. The side chain of Glu20 provided by the DNA-binding domain forms a salt bridge to Arg80, which in turn interacts with the anion. Replacing either of the salt-bridge partners with an alanine reduces repressor activity substantially and it has been inferred that the salt bridge could possibly control the wedge angle between the DNA-binding domain and the dimerization domain, thereby modulating repressor activity. Cys102 is a key residue of metal site 2 and its substitution into a serine abolishes repressor activity. The crystal structures of Zn-Glu20Ala-DtxR, Zn-Arg80Ala-DtxR, Cd-Cys102Ser-DtxR and apo-Cys102Ser-DtxR in two related space groups reveal that none of these substitutions leads to dramatic rearrangements of the DtxR fold. However, the five crystal structures presented here show significant local changes and a considerable degree of flexibility of the DNA-binding domain with respect to the dimerization domain. Furthermore, all five structures deviate significantly from the structure in the DtxR-DNA complex with respect to overall domain orientation. These results confirm the importance of the hinge motion for repressor activity. Since the third domain has often been invisible in previous crystal structures of DtxR, it is also noteworthy that the SH3-like domain could be traced in four of the five crystal structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.