The complement system is an essential component of the innate immune system that participates in elimination of pathogens and altered host cells and comprises an essential link between the innate and adaptive immune system. Soluble and membrane-bound complement regulators protect cells and tissues from unintended complement-mediated injury. Complement factor H is a soluble complement regulator essential for controlling the alternative pathway in blood and on cell surfaces. Normal recognition of self cell markers (i.e. polyanions) and C3b/C3d fragments is necessary for factor H function. Inadequate recognition of host cell surfaces by factor H due to mutations and polymorphisms have been associated with complement-mediated tissue damage and disease. On the other hand, unwanted recognition of pathogens and altered self cells (i.e. cancer) by factor H is used as an immune evasion strategy. This review will focus on the current knowledge related to these versatile recognition properties of factor H.
SummaryFactor H (fH), a key alternative complement pathway regulator, is a cofactor for factor I-mediated cleavage of C3b. fH consists of 20 short consensus repeat (SCR) domains. Sialic acid binding domains have previously been localized to fH SCRs 6-10 and 13. To examine fH binding on a sialylated microbial surface, we grew Neisseria gonorrhoeae in the presence of 5 Ј -cytidinemonophospho-N -acetylneuraminic acid, which sialylates lipooligosaccharide and converts to serum resistance gonococci previously sensitive to nonimmune serum killing. fH domains necessary for binding sialylated gonococci were determined by incubating organisms with recombinant human fH (rH) and nine mutant rH molecules (deletions spanning the entire fH molecule). rH and all mutant rH molecules that contained SCRs 16-20 bound to the sialylated strain; no mutant molecule bound to serum-sensitive nonsialylated organisms. Sialic acid was demonstrated to be the fH target by flow cytometry that showed a fourfold increase in fH binding that was reversed by neuraminidase-mediated cleavage of sialic acid off gonococci. Functional specificity of fH was confirmed by decreased total C3 binding and almost complete conversion to iC3b on sialylated gonococci. Sialic acid can therefore bind fH uniquely through SCRs 16-20. This blocks complement pathway activation for N. gonorrhoeae at the level of C3.
The complement regulatory enzyme, C3b inactivator (C3bINA), has been purified from human serum by affinity chromatography on an anti-C3bINA Sepharose column. Subsequent chromatography on DEAE-cellulose and removal of IgG with anti-IgG Sepharose resulted in a product which was found to be homogeneous by polyacrylamide gel electrophoresis at pH 8.9 and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecule is composed of two disulfide bonded polypeptide chains with mol wt of 50,000 and 38,000 daltons. Human CobINA was found to be a glycoprotein containing at least 10.7% carbohydrate and to have a normal serum concentration of 34 +/- 7 mug/ml (mean +/- 1 SD). Highly purified C3bINA cleaved neither free C3b nor free C4b if trace amounts of contaminating beta1H were removed from these proteins with anti-beta1H Sepharose. However, in the presence of highly purified beta1H and C3bINA, both C3bIna, both C3b and C4b were cleaved. Incubation of native C3 or C4 with C3bINA and beta1H had no effect on their cleaved. Incubation of native C3 or C4 with C3bINA and beta1H had no effect on their structure. The action of C3bINA and beta1H on C3b produced two fragments of the alpha1-chain which did not dissociate without reduction of the molecule. These fragments have mol wt of 67,000 and 40,000 daltons. The action of C3bINA and beta1H on C4b resulted in cleavage of the alpha'-chain giving rise to the 150,000-dalton C4c and the 49,000-dalton C4d fragments which dissociated without reduction. To produce from C3b the immunochemically defined C3c and C3d, fragments, the action of an additional serum enzyme appears to be required, the effect of which can be mimicked by trypsin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.