Transgenerational effects of environmental toxins require either a chromosomal or epigenetic alteration in the germ line. Transient exposure of a gestating female rat during the period of gonadal sex determination to the endocrine disruptors vinclozolin (an antiandrogenic compound) or methoxychlor (an estrogenic compound) induced an adult phenotype in the F 1 generation of decreased spermatogenic capacity (cell number and viability) and increased incidence of male infertility. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined (that is, F 1 to F 4 ). The effects on reproduction correlate with altered DNA methylation patterns in the germ line. The ability of an environmental factor (for example, endocrine disruptor) to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.
Epidemiological evidence increasingly suggests that environmental exposures early in development have a role in susceptibility to disease in later life. In addition, some of these environmental effects seem to be passed on through subsequent generations. Epigenetic modifications provide a plausible link between the environment and alterations in gene expression that might lead to disease phenotypes. An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility. Furthermore, recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype. Methods are now becoming available to investigate the relevance of these phenomena to human disease.
The ability of environmental factors to promote a phenotype or disease state not only in the individual exposed but also in subsequent progeny for multiple generations is termed transgenerational inheritance. The majority of environmental factors such as nutrition or toxicants such as endocrine disruptors do not promote genetic mutations or alterations in DNA sequence. In contrast, these factors have the capacity to alter the epigenome. Epimutations in the germ line that become permanently programmed can allow transmission of epigenetic transgenerational phenotypes. This review provides an overview of the epigenetics and biology of how environmental factors can promote transgenerational phenotypes and disease.
We have generated and analysed null mutations in the mouse genes encoding three structurally related receptors with tyrosine kinase activity: Tyro 3, Axl, and Mer. Mice lacking any single receptor, or any combination of two receptors, are viable and fertile, but male animals that lack all three receptors produce no mature sperm, owing to the progressive death of differentiating germ cells. This degenerative phenotype appears to result from a failure of the tropic support that is normally provided by Sertoli cells of the seminiferous tubules, whose function depends on testosterone and additional factors produced by Leydig cells. Tyro 3, Axl and Mer are all normally expressed by Sertoli cells during postnatal development, whereas their ligands, Gas6 and protein S, are produced by Leydig cells before sexual maturity, and by both Leydig and Sertoli cells thereafter. Here we show that the concerted activation of Tyro 3, Axl and Mer in Sertoli cells is critical to the role that these cells play as nurturers of developing germ cells. Additional observations indicate that these receptors may also be essential for the tropic maintenance of diverse cell types in the mature nervous, immune and reproductive systems.
Environmental compounds are known to promote epigenetic transgenerational inheritance of adult onset disease in subsequent generations (F1–F3) following ancestral exposure during fetal gonadal sex determination. The current study was designed to determine if a mixture of plastic derived endocrine disruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) at two different doses promoted epigenetic transgenerational inheritance of adult onset disease and associated DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to either the “plastics” or “lower dose plastics” mixture during embryonic days 8 to 14 of gonadal sex determination and the incidence of adult onset disease was evaluated in F1 and F3 generation rats. There were significant increases in the incidence of total disease/abnormalities in F1 and F3 generation male and female animals from plastics lineages. Pubertal abnormalities, testis disease, obesity, and ovarian disease (primary ovarian insufficiency and polycystic ovaries) were increased in the F3 generation animals. Kidney and prostate disease were only observed in the direct fetally exposed F1 generation plastic lineage animals. Analysis of the plastics lineage F3 generation sperm epigenome previously identified 197 differential DNA methylation regions (DMR) in gene promoters, termed epimutations. A number of these transgenerational DMR form a unique direct connection gene network and have previously been shown to correlate with the pathologies identified. Observations demonstrate that a mixture of plastic derived compounds, BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease. The sperm DMR provide potential epigenetic biomarkers for transgenerational disease and/or ancestral environmental exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.