Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X7R, which leads to ATP-induced loss of intracellular K+, NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X7R activation caused a sustained increase in intracellular [Ca2+], which is indicative of P2X7R channel opening. Although there are multiple polymorphic variants of P2X7R, we found that neutrophils from multiple donors express P2X7R, but with differential efficacies in ATP-induced increase in cytosolic [Ca2+]. Neutrophils were also the predominant P2X7R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X7R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X7R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact.
Although neutrophils are the most abundant cells in acute infection and inflammation, relatively little attention has been paid to their role in inflammasome formation and IL-1β processing. In the current study, we investigated the mechanism by which neutrophils process IL-1β in response to Streptococcus pneumoniae. Using a murine model of S. pneumoniae corneal infection, we demonstrated a requirement for IL-1β in bacterial clearance, and showed that NLRP3, ASC and caspase-1 are essential for IL-1β production and bacterial killing in the cornea. Neutrophils in infected corneas had multiple specks with enzymatically active caspase-1 (FLICA-660+), and bone marrow neutrophils stimulated with heat killed S. pneumoniae (signal 1) and pneumolysin (signal 2) exhibited multiple specks after staining with FLICA-660, NLRP3 or ASC. High molecular weight ASC complexes were also detected, consistent with oligomer formation. Pneumolysin induced K+ efflux in neutrophils, and blocking K+ efflux inhibited caspase-1 activation and IL-1β processing; however, neutrophils did not undergo pyroptosis, indicating that K+ efflux and IL-1β processing is not a consequence of cell death. There was also no role for lysosomal destabilization or neutrophil elastase in pneumolysin mediated IL-1β processing in neutrophils. Together, these findings demonstrate an essential role for neutrophil derived IL-1β in S. pneumoniae infection, and elucidate the role of the NLRP3 inflammasome in neutrophil cleavage and secretion of mature IL-1β. Given the ubiquitous presence of neutrophils in acute bacterial and fungal infections, these findings will have implications for other microbial diseases.
Perturbation of intracellular ion homeostasis is a major cellular stress signal for activation of NLRP3 inflammasome signaling that results in caspase-1 mediated production of IL-1β and pyroptosis. However, the relative contributions of decreased cytosolic [K+] versus increased cytosolic [Ca2+] remain disputed and incompletely defined. We investigated roles for elevated cytosolic [Ca2+] in NLRP3 activation and downstream inflammasome signaling responses in primary murine dendritic cells and macrophages in response to two canonical NLRP3 agonists (ATP and nigericin) that facilitate primary K+ efflux by mechanistically distinct pathways or the lysosome-destabilizing agonist Leu-Leu-O-methyl ester (LLME). The study provides three major findings relevant to this unresolved area of NLRP3 regulation. First, increased cytosolic [Ca2+] was neither a necessary nor sufficient signal for the NLRP3 inflammasome cascade during activation by endogenous ATP-gated P2X7 receptor channels, the exogenous bacterial ionophore nigericin, or the lysosomotropic agent LLME. Second, agonists for three Ca2+-mobilizing G protein-coupled receptors (formyl peptide receptor/FPR; P2Y2 purinergic receptor/P2Y2R; calcium-sensing receptor/CaSR) expressed in murine dendritic cells were ineffective as activators of rapidly induced NLRP3 signaling when directly compared to the K+ efflux agonists. Third, the intracellular Ca2+ buffer, BAPTA, and the channel blocker, 2-aminoethoxydiphenyl borate (2-APB), widely used reagents for disruption of Ca2+-dependent signaling pathways, strongly suppressed nigericin-induced NLRP3 inflammasome signaling via mechanisms dissociated from their canonical or expected effects on Ca2+ homeostasis. The results indicate that the ability of K+ efflux agonists to activate NLRP3 inflammasome signaling can be dissociated from changes in cytosolic [Ca2+] as a necessary or sufficient signal.
Canonical inflammasome activation induces a caspase-1/gasdermin D (Gsdmd) dependent lytic cell death called pyroptosis which promotes anti-microbial host defense but may contribute to sepsis. The nature of the caspase-1-dependent change in plasma membrane (PM) permeability during pyroptotic progression remains incompletely defined. We assayed propidium2+ (Pro2+) influx kinetics during NLRP3 or Pyrin inflammasome activation in murine bone marrow-derived macrophages (BMDM) as an indicator of this PM permeabilization. BMDM were characterized by rapid Pro2+ influx after initiation of NLRP3 or Pyrin inflammasomes by nigericin or C. difficile toxin B (TcdB), respectively. No Pro2+ uptake in response to nigericin or TcdB was observed in Caspase-1−/− or ASC−/− BMDM. The cytoprotectant glycine profoundly suppressed nigericin and TcdB-induced lysis but not Pro2+ influx. The absence of Gsdmd expression resulted in suppression of nigericin-stimulated Pro2+ influx and pyroptotic lysis. Extracellular La3+ and Gd3+ rapidly and reversibly blocked the induced Pro2+ influx and markedly delayed pyroptotic lysis without limiting upstream inflammasome assembly and caspase-1 activation. Thus, caspase-1 driven pyroptosis requires induction of initial pre-lytic pores in the PM that are dependent on Gsdmd expression. These PM pores also facilitated the efflux of cytosolic ATP and influx of extracellular Ca2+. Although lanthanides and Gsdmd deletion both suppressed PM pore activity and pyroptotic lysis, robust IL-1β release was observed in lanthanide-treated BMDM but not in Gsdmd-deficient cells. This suggests roles for Gsdmd in both passive IL-1β release secondary to pyroptotic lysis and in non-lytic/non-classical IL-1β export.
Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K(+)-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K(+) permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu-O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K(+) efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca(2+) influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes in PM cation fluxes, cell death, and NLRP3 inflammasome activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.