Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and brain size (indexed by intracranial volume). Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (N = 1,443 and 1,113, respectively), we found several asymmetries showing modest but highly reliable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.Significance StatementLeft-right asymmetry is a key feature of the human brain's structure and function. It remains unclear which cortical regions are asymmetrical on average in the population, and how biological factors such as age, sex and genetic variation affect these asymmetries. Here we describe by far the largest ever study of cerebral cortical brain asymmetry, based on data from 17,141 participants. We found a global anterior-posterior 'torque' pattern in cortical thickness, together with various regional asymmetries at the population level, which have not been previously described, as well as effects of age, sex, and heritability estimates. From these data, we have created an on-line resource that will serve future studies of human brain anatomy in health and disease.
Background: Smaller hippocampal volumes have been reported in the brains of alcoholic patients than in those of healthy subjects, although it is unclear if the hippocampus is disproportionally smaller than the brain as a whole. There is evidence that alcoholic women are more susceptible than alcoholic men to liver and cardiac damage from alcohol. It is not known whether the hippocampi of the female brain are more vulnerable to alcohol.
Experiments were conducted with intact rat hepatocytes to identify inhibitors and incubation conditions that cause selective inhibition of alanine aminotransferase or aspartate aminotransferase. Satisfactory results were obtained by preincubating cells with L-cycloserine or L-2-amino-4-methoxy-trans-but-3-enoic acid in the absence of added substrates. When cells were incubated for 20 min with 50 microM-L-cycloserine, alanine aminotransferase activity was decreased by 90%, whereas aspartate aminotransferase was inhibited by 10% or less. On subsequent incubation, synthesis of glucose and urea from alanine was strongly inhibited, but glucose synthesis from lactate was unaffected. L-2-Amino-4-methoxy-trans-but-3-enoic acid (400 microM) in hepatocyte incubations caused 90-95% inactivation of aspartate aminotransferase, but only 15-30% loss of alanine aminotransferase activity. After preincubation with the inhibitor, glucose synthesis from lactate was almost completely blocked; with alanine as the substrate, gluconeogenesis was unaffected, and urea synthesis was only slightly decreased. By comparison with preincubation with inhibitors, simultaneous addition of substrates (alanine; lactate plus lysine) and inhibitors (cycloserine; aminomethoxybutenoic acid) resulted in smaller decreases in aminotransferase activities and in metabolic rates. Other compounds were less satisfactory as selective inhibitors. Ethylhydrazinoacetate inactivated the two aminotransferases to similar extents. Vinylglycine was almost equally effective in blocking the two enzymes in vitro, but was a very weak inhibitor when used with intact cells. Concentrations of DL-propargylglycine (4 mM) required to cause at least 90% inhibition of alanine aminotransferase in hepatocytes also caused a 16% decrease in aspartate aminotransferase. When tested in vitro, alanine aminotransferase was, as previously reported by others, more sensitive to inhibition by amino-oxyacetate than was aspartate aminotransferase, but in liver cell incubations the latter enzyme was more rapidly inactivated by amino-oxyacetate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.