Summary paragraphThe Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency <1% and 46% are singletons. These rare variants provide insights into mutational processes and recent human evolutionary history. The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and extends the reach of nearly all genome-wide association studies to include variants down to ~0.01% in frequency.
The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
DNA methylation is implicated in a surprising diversity of regulatory, evolutionary processes and diseases in eukaryotes. The introduction of whole-genome bisulfite sequencing has enabled the study of DNA methylation at a single-base resolution, revealing many new aspects of DNA methylation and highlighting the usefulness of methylome data in understanding a variety of genomic phenomena. As the number of publicly available whole-genome bisulfite sequencing studies reaches into the hundreds, reliable and convenient tools for comparing and analyzing methylomes become increasingly important. We present MethPipe, a pipeline for both low and high-level methylome analysis, and MethBase, an accompanying database of annotated methylomes from the public domain. Together these resources enable researchers to extract interesting features from methylomes and compare them with those identified in public methylomes in our database.
Despite its initial treatment as a nuisance variable, the placebo effect is now recognized as a powerful determinant of health across many different diseases and encounters. This is in light of some remarkable findings ranging from demonstrations that the placebo effect significantly modulates the response to active treatments in conditions such as pain, anxiety, Parkinson’s disease, and some surgical procedures. Here, we review pioneering studies and recent advances in behavioral, neurobiological, and genetic influences on the placebo effect. Based on a previous developed conceptual framework, the placebo effect is presented as the product of a general expectancy learning mechanism in which verbal, conditioned and social cues are centrally integrated to change behaviors and outcomes. Examples of the integration of verbal and conditioned cues, such as instructed reversal of placebo effects are also incorporated into this model. We discuss neuroimaging studies that using well-established behavioral paradigms have identified key brain regions and modulatory mechanisms underlying placebo effects. Finally, we present a synthesis of recent genetics studies on the placebo effect, highlighting a promising link between genetic variants in the dopamine, opioid, serotonin, and endocannabinoid pathways and placebo responsiveness. Greater understanding of the behavioral, neurobiological, and genetic influences on the placebo effect is critical for evaluating medical interventions and may allow health professionals to tailor and personalize interventions in order to maximize treatment outcomes in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.