<p>This article introduces a method of evaluating subsamples until any prescribed level of classification accuracy is attained, thus obtaining arbitrary accuracy. A logarithmic reduction in error rate is obtained with a linear increase in sample count. The technique is applied to specific emitter identification on a published dataset of physically recorded over-the-air signals from 16 ostensibly identical high-performance radios. The technique uses a multi-channel deep learning convolutional neural network acting on the bispectra of I/Q signal subsamples each consisting of 56 parts per million (ppm) of the original signal duration. High levels of accuracy are obtained with minimal computation time: in this application, each addition of eight samples decreases error by one order of magnitude.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.