Following a request from EFSA, the Panel on Plant Protection Products and their Residues (PPR) developed an opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) models and their use in prospective environmental risk assessment (ERA) for pesticides and aquatic organisms. TKTD models are species-and compound-specific and can be used to predict (sub)lethal effects of pesticides under untested (time-variable) exposure conditions. Three different types of TKTD models are described, viz., (i) the 'General Unified Threshold models of Survival' (GUTS), (ii) those based on the Dynamic Energy Budget theory (DEBtox models), and (iii) models for primary producers. All these TKTD models follow the principle that the processes influencing internal exposure of an organism, (TK), are separated from the processes that lead to damage and effects/mortality (TD). GUTS models can be used to predict survival rate under untested exposure conditions. DEBtox models explore the effects on growth and reproduction of toxicants over time, even over the entire life cycle. TKTD model for primary producers and pesticides have been developed for algae, Lemna and Myriophyllum. For all TKTD model calibration, both toxicity data on standard test species and/or additional species can be used. For validation, substance and species-specific data sets from independent refined-exposure experiments are required. Based on the current state of the art (e.g. lack of documented and evaluated examples), the DEBtox modelling approach is currently limited to research applications. However, its great potential for future use in prospective ERA for pesticides is recognised. The GUTS model and the Lemna model are considered ready to be used in risk assessment. This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union. As a third deliverable of this mandate, the PPR Panel is asked to develop a Scientific Opinion describing the state of the art of Toxicokinetic/Toxicodynamic (TKTD) models for aquatic organisms and prospective environmental risk assessment (ERA) for pesticides with the main focus on: (i) regulatory questions that can be addressed by TKTD modelling, (ii) available TKTD models for aquatic organisms, (iii) model parameters that need to be included and checked in evaluating the acceptability of regulatory relevant TKTD models, and (iv) selection of the species to be modelled.Chapter 2 presents the underlying concepts, terminology, application domains and complexity levels of three different classes of TKTD models intended to be used in risk assessment, viz., (i) the 'General Unified Threshold models of Survival' (GUTS), (ii) toxicity models derived from the Dynamic Energy Budget theory (DEBtox models), and (iii) models for primary producers. All ...
Of the test-case patients (for whom MEDLINE searches were conducted during hospitalization), those whose searches were conducted earlier had statistically significantly lower costs, charges, and lengths of stay than those whose searches were conducted later.
Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science behind the risk assessment of plant protection products for in-soil organisms. The current risk assessment scheme is reviewed, taking into account new regulatory frameworks and scientific developments. Proposals are made for specific protection goals for in-soil organisms being key drivers for relevant ecosystem services in agricultural landscapes such as nutrient cycling, soil structure, pest control and biodiversity. Considering the time-scales and biological processes related to the dispersal of the majority of in-soil organisms compared to terrestrial non-target arthropods living above soil, the Panel proposes that in-soil environmental risk assessments are made at in-and off-field scale considering field boundary levels. A new testing strategy which takes into account the relevant exposure routes for in-soil organisms and the potential direct and indirect effects is proposed. In order to address species recovery and long-term impacts of PPPs, the use of population models is also proposed.
Citation for published item:oppingD ghris tF nd grigD eter F nd de tongD prnk nd uleinD wihel nd vskowskiD yszrd nd wnhiniD frr nd ieperD ilvi nd mithD o nd ousD tos¡ e ulo nd treisslD prnz nd wrowskyD ulus nd iktkD eldrik nd vn der vindenD on @PHISA 9owrds lndspe sle mngement of pestiides X ie using hnges in modelled oupny nd undne to ssess longEterm popultion impts of pestiidesF9D iene of the totl environmentFD SQU F ppF ISWEITWF Further information on publisher's website: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. AbstractPesticides are regulated in Europe and this process includes an environmental risk assessment (ERA) for non-target arthropods (NTA). Traditionally a non-spatial or field trial assessment is used. In this study we exemplify the introduction of a spatial context to the ERA as well as suggest a way in which the results of complex models, necessary for proper inclusion of spatial aspects in the ERA, can be presented and evaluated easily using abundance and occupancy ratios (AOR). We used an agent-based simulation system and an existing model for a widespread carabid beetle (Bembidion lampros), to evaluate the impact of a fictitious highly-toxic pesticide on population density and the distribution of beetles in time and space. Landscape structure and field margin management were evaluated by comparing scenario-based ERAs for the beetle. Source-sink dynamics led to an off-crop impact even when no pesticide was present off-crop. In addition, the impacts increased with multi-year application of the pesticide whereas current ERA considers only maximally one year. These results further indicated a complex interaction between landscape structure and pesticide effect in time, both in-crop and off-crop, indicating the need for NTA ERA to be conducted at landscape-and multi-season temporal-scales. Use of AOR indices to compare ERA outputs facilitated easy comparison of scenarios, allowing simultaneous evaluation of impacts and planning of mitigation measures. The landscape and population ERA approach also demonstrates that there is a potential to change from regulation of a pesticide in isolation, towards the consideration of pesticide management at landscape scales and provision of biodiversity benefits via inclusion and testing of mitigation measures in authorisation procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.