BackgroundHis bundle pacing is a new method for delivering cardiac resynchronization therapy (CRT).ObjectivesThe authors performed a head-to-head, high-precision, acute crossover comparison between His bundle pacing and conventional biventricular CRT, measuring effects on ventricular activation and acute hemodynamic function.MethodsPatients with heart failure and left bundle branch block referred for conventional biventricular CRT were recruited. Using noninvasive epicardial electrocardiographic imaging, the authors identified patients in whom His bundle pacing shortened left ventricular activation time. In these patients, the authors compared the hemodynamic effects of His bundle pacing against biventricular pacing using a high-multiple repeated alternation protocol to minimize the effect of noise, as well as comparing effects on ventricular activation.ResultsIn 18 of 23 patients, left ventricular activation time was significantly shortened by His bundle pacing. Seventeen patients had a complete electromechanical dataset. In them, His bundle pacing was more effective at delivering ventricular resynchronization than biventricular pacing: greater reduction in QRS duration (−18.6 ms; 95% confidence interval [CI]: −31.6 to −5.7 ms; p = 0.007), left ventricular activation time (−26 ms; 95% CI: −41 to −21 ms; p = 0.002), and left ventricular dyssynchrony index (−11.2 ms; 95% CI: −16.8 to −5.6 ms; p < 0.001). His bundle pacing also produced a greater acute hemodynamic response (4.6 mm Hg; 95% CI: 0.2 to 9.1 mm Hg; p = 0.04). The incremental activation time reduction with His bundle pacing over biventricular pacing correlated with the incremental hemodynamic improvement with His bundle pacing over biventricular pacing (R = 0.70; p = 0.04).ConclusionsHis resynchronization delivers better ventricular resynchronization, and greater improvement in hemodynamic parameters, than biventricular pacing.
Background A novel remotely controlled steerable guide catheter has been developed to enable precise manipulation and stable positioning of any eight French (Fr) or smaller electrophysiological catheter within the heart for the purposes of mapping and ablation. Objective To report our initial experience using this system for remotely performing catheter ablation in humans. Methods Consecutive patients attending for routine ablation were recruited. Various conventional diagnostic catheters were inserted through the left femoral vein in preparation for treating an accessory pathway (n=1), atrial flutter (n=2) and atrial fibrillation (n=7). The steerable guide catheter was inserted into the right femoral vein through which various irrigated and non-irrigated tip ablation catheters were used. Conventional endpoints of loss of pathway conduction, bidirectional cavotricuspid isthmus block and four pulmonary vein isolation were used to determine acute procedural success. Results Ten patients underwent remote catheter ablation using conventional and/or 3D non-fluoroscopic mapping technologies. All procedural endpoints were achieved using the robotic control system without manual manipulation of the ablation catheter. There was no major complication. A radiation dosimeter positioned next to the operator 2.7 m away from the X-ray source showed negligible exposure despite a mean cumulative dose area product of 7,281.4 cGycm 2 for all ten ablation procedures. Conclusions Safe and clinically effective remote navigation of ablation catheters can be achieved using a novel remotely controlled steerable guide catheter in a variety of arrhythmias. The system is compatible with current mapping and ablation technologies Remote navigation substantially reduces radiation exposure to the operator.
BackgroundLocalizing the origin of outflow tract ventricular tachycardias (OTVT) is hindered by lack of accuracy of electrocardiographic (ECG) algorithms and infrequent spontaneous premature ventricular complexes (PVCs) during electrophysiological studies.ObjectivesTo prospectively assess the performance of noninvasive electrocardiographic mapping (ECM) in the pre-/periprocedural localization of OTVT origin to guide ablation and to compare the accuracy of ECM with that of published ECG algorithms.MethodsPatients with symptomatic OTVT/PVCs undergoing clinically indicated ablation were recruited. The OTVT/PVC origin was mapped preprocedurally by using ECM, and 3 published ECG algorithms were applied to the 12-lead ECG by 3 blinded electrophysiologists. Ablation was guided by using ECM. The OTVT/PVC origin was defined as the site where ablation caused arrhythmia suppression. Acute success was defined as abolition of ectopy after ablation. Medium-term success was defined as the abolition of symptoms and reduction of PVC to less than 1000 per day documented on Holter monitoring within 6 months.ResultsIn 24 patients (mean age 50 ± 18 years) recruited ECM successfully identified OTVT/PVC origin in 23/24 (96%) (right ventricular outflow tract, 18; left ventricular outflow tract, 6), sublocalizing correctly in 100% of this cohort. Acute ablation success was achieved in 100% of the cases with medium-term success in 22 of 24 patients. PVC burden reduced from 21,837 ± 23,241 to 1143 ± 4039 (P < .0001). ECG algorithms identified the correct chamber of origin in 50%–88% of the patients and sublocalized within the right ventricular outflow tract (septum vs free-wall) in 37%–58%.ConclusionsECM can accurately identify OTVT/PVC origin in the left and the right ventricle pre- and periprocedurally to guide catheter ablation with an accuracy superior to that of published ECG algorithms.
Patients with ICDs are routinely counseled about the benefits of ICDs, but options for device deactivation are not well understood by patients. Most patients would like to be involved in deactivation decisions and we feel this should be discussed well in advance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.