Besides airborne laser bathymetry and multimedia photogrammetry, spectrally derived bathymetry provides a third optical method for deriving water depths. In this paper, we introduce BathyNet, an U-net like convolutional neural network, based on high-resolution, multispectral RGBC (red, green, blue, coastal blue) aerial images. The approach combines photogrammetric and radiometric methods: Preprocessing of the raw aerial images relies on strict ray tracing of the potentially oblique image rays, considering the intrinsic and extrinsic camera parameters. The actual depth estimation exploits the radiometric image content in a deep learning framework. 3D water surface and water bottom models derived from simultaneously captured laser bathymetry point clouds serve as reference and training data for both image preprocessing and actual depth estimation. As such, the approach highlights the benefits of jointly processing data from hybrid active and passive imaging sensors. The RGBC images and laser data of four groundwater supplied lakes around Augsburg, Germany, captured in April 2018 served as the basis for testing and validating the approach. With systematic depth biases less than 15 cm and a standard deviation of around 40 cm, the results satisfy the vertical accuracy limit Bc7 defined by the International Hydrographic Organization. Further improvements are anticipated by extending BathyNet to include a simultaneous semantic segmentation branch.
Abstract. The term "Crowdsourcing" goes back to Jeff Howe (Howe, 2006) and represents a neologism of the words "crowd" and "outsourcing". Unlike outsourcing, where companies outsource certain tasks to known third parties, crowdsourcing outsources tasks to unknown workers (crowdworkers) on the Internet. This allows companies to access large numbers of workers who would otherwise not be available. In this paper, we will discuss an approach for the crowd-based collection of trees by means of minimum bounding cylinders from 3D point clouds. We will demonstrate the used web-interface and compare the results with reference data. To improve the quality of the results, we collect the data not only once but multiple times. This enables us to implement a so-called “Wisdom of the Crowd” approach where we can identify automatically outliers and derive integrated cylinders. We will show in this paper that this approach increases significantly the quality of the results.
Abstract. Automated semantic interpretation of 3D point clouds is crucial for many tasks in the domain of geospatial data analysis. For this purpose, labeled training data is required, which has often to be provided manually by experts. One approach to minimize effort in terms of costs of human interaction is Active Learning (AL). The aim is to process only the subset of an unlabeled dataset that is particularly helpful with respect to class separation. Here a machine identifies informative instances which are then labeled by humans, thereby increasing the performance of the machine. In order to completely avoid involvement of an expert, this time-consuming annotation can be resolved via crowdsourcing. Therefore, we propose an approach combining AL with paid crowdsourcing. Although incorporating human interaction, our method can run fully automatically, so that only an unlabeled dataset and a fixed financial budget for the payment of the crowdworkers need to be provided. We conduct multiple iteration steps of the AL process on the ISPRS Vaihingen 3D Semantic Labeling benchmark dataset (V3D) and especially evaluate the performance of the crowd when labeling 3D points. We prove our concept by using labels derived from our crowd-based AL method for classifying the test dataset. The analysis outlines that by labeling only 0:4% of the training dataset by the crowd and spending less than 145 $, both our trained Random Forest and sparse 3D CNN classifier differ in Overall Accuracy by less than 3 percentage points compared to the same classifiers trained on the complete V3D training set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.