This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Yersinia entercolitica is a bacterial species within the genus Yersinia, mostly known as a human enteric pathogen, but also recognized as a zoonotic agent widespread in domestic pigs. Findings of this bacterium in wild animals are very limited. The current report presents results of the identification of cultures of Y. entercolitica from dead bats after a massive bat die-off in a cave in western Georgia. The growth of bacterial colonies morphologically suspected as Yersinia was observed from three intestine tissues of 11 bats belonging to the Miniopterus schreibersii species. These three isolates were identified as Y. enterocolitica based on the API29 assay. No growth of Brucella or Francisella bacteria was observed from tissues of dead bats. Full genomes (a size between 4.6–4.7 Mbp) of the Yersinia strains isolated from bats were analyzed. The phylogenetic sequence analyses of the genomes demonstrated that all strains were nearly identical and formed a distinct cluster with the closest similarity to the environmental isolate O:36/1A. The bat isolates represent low-pathogenicity Biotype 1A strains lacking the genes for the Ail, Yst-a, Ysa, and virulence plasmid pYV, while containing the genes for Inv, YstB, and MyfA. Further characterization of the novel strains cultured from bats can provide a clue for the determination of the pathogenic properties of those strains.
All pathogenic organisms are exposed to abiotic influences such as the microclimates and chemical constituents of their environments. Even those pathogens that exist primarily within their hosts or vectors can be influenced directly or indirectly. Yersinia pestis, the flea-borne bacterium causing plague, is influenced by climate and its survival in soil suggests a potentially strong influence of soil chemistry. We summarize a series of controlled studies conducted over four decades in Russia by Dr. Evgeny Rotshild and his colleagues that investigated correlations between trace metals in soils, plants, and insects, and the detection of plague in free-ranging small mammals. Trace metal concentrations in plots where plague was detected were up to 20-fold higher or lower compared to associated control plots, and these differences were >2-fold in 22 of 38 comparisons. The results were statistically supported in eight studies involving seven host species in three families and two orders of small mammals. Plague tended to be positively associated with manganese and cobalt, and the plague association was negative for copper, zinc, and molybdenum. In additional studies, these investigators detected similar connections between pasturellosis and concentrations of some chemical elements. A One Health narrative should recognize that the chemistry of soil and water may facilitate or impede epidemics in humans and epizootics in non-human animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.