Background: High-intensity interval training (HIIT) is a well-established training modality to improve aerobic and anaerobic capacity. However, sex-specific aspects of different HIIT protocols are incompletely understood. This study aimed to compare two HIIT protocols with different recovery periods in moderately trained females and males and to investigate whether sex affects high-intensity running speed and speed decrement. Methods: Fifty moderately trained participants (30 females and 20 males) performed an exercise field test and were randomized by lactate threshold (LT) to one of two time-and workload-matched training groups. Participants performed a 4-week HIIT intervention with two exercise sessions/week: Group 1 (4 × 30,180 HIIT), 30-s all-out runs, 180-s active recovery and Group 2 (4 × 30,30 HIIT), 30-s all-out runs, 30-s active recovery. High-intensity runs were recorded, and speed per running bout, average speed per session, and speed decrement were determined. Blood lactate measurements were performed at baseline and follow-up at rest and immediately post-exercise. Results: Females and males differed in running speed at LT and maximal running speed determined during exercise field test (speed at LT, females: 10.65 ± 0.84 km h −1 , males: 12.41 ± 0.98 km h −1 , p < 0.0001; maximal speed, females: 14.55 ± 1.05 km h −1 , males: 17.41 ± 0.68 km h −1 , p < 0.0001). Estimated maximal oxygen uptake was ~52.5 ml kg −1 min −1 for females and 62.6 ml kg −1 min −1 for males (p < 0.0001). Analysis of HIIT protocols revealed an effect of sex on change in speed decrement (baseline vs. follow-up) in that females showed significant improvements only in the 4 × 30:30 HIIT group (p = 0.0038). Moreover, females performing the 4 × 30:30 protocol presented increased speed per bout and average speed per session at follow-up (all p ≤ 0.0204), while no effect was detected for females performing the 4 × 30:180 protocol. Peak blood lactate levels increased in all HIIT groups (all p < 0.05, baseline vs. follow-up), but males performing the 4 × 30:180 protocol showed no difference in lactate levels. Conclusions: If not matched for physical performance, females, but not males, performing a 4 × 30 HIIT protocol with shorter recovery periods (30 s) present increased average Schmitz et al.
Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels.Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT).Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p < 0.01, pre- vs. post-exercise). After the intervention, acute exercise miR-222 levels were still increased in the 4 × 30 HIIT group (p < 0.01, pre- vs. post-exercise) while in the 8 × 15 HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p < 0.001, pre- vs. post-intervention). Neither of the two miRNAs were elevated at any ICRT speed level at baseline nor follow-up. While HR recovery was improved by >24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group (p < 0.0132). Correlation analysis suggested an association between both miRNAs and TGF-beta1 mRNA (all p ≤ 0.006, r ≥ 0.74) as well as change in speed at IAT and change in miR-222 levels (p = 0.024, r = 0.46).Conclusions: HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations.
Aim: MicroRNA-126 (miR-126) exerts beneficial effects on vascular integrity, angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was to analyze the dose-response relationship of high-intensity interval training (HIIT) on miR-126-3p and -5p levels.Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84 years) were consecutively recruited and allocated into three matched groups using exercise capacity. During a 4-week intervention a HIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out), a progressive HIIT (proHIIT) group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out) with one extra session every week (up to 7 × 30 s) and a low-intensity training (LIT) control group performed three exercise sessions/week for 25 min <75% of maximum heart rate. Exercise miR-126-3p/-5p plasma levels were determined using capillary blood from earlobes.Results: No exercise-induced increase in miR-126 levels was detected at baseline, neither in the LIT (after 25 min low-intensity running) nor the HIIT groups (after 4 min of high-intensity running). After the intervention, the LIT group presented an increase in miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p < 0.05). An increase for both, miR-126-3p and -5p levels (all p < 0.05, pre- vs. during and post-exercise) was detected in the proHIIT group. Between group analysis revealed that miR-126-3p levels after LIT and proHIIT increased by 2.12 ± 2.55 and 1.24 ± 2.46 units (all p < 0.01), respectively, compared to HIIT (−1.05 ± 2.6 units).Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels. HIIT without progression was less effective in increasing miR-126.
High-intensity interval training (HIIT) has been proposed to exert vasculoprotective effects. This study aimed to evaluate whether HIIT affects the microvasculature, including the endothelial glycocalyx barrier, and to identify associated microRNAs (miRNAs). Fifty healthy participants (23.1 ± 3.0 yr) performed a 4-wk 4 × 30-s all-out running HIIT. Sidestream dark-field imaging was performed at baseline and follow-up to detect changes of the sublingual microvasculature including the endothelial glycocalyx. Exercise parameters were determined by continuous running field test and documentation of high-intensity runs. miRNAs potentially associated with glycocalyx thickness were selected by structured literature search and blood samples for miRNA, and lactate measurements were drawn at baseline and follow-up HIIT. At baseline, a correlation between maximal exercise performance capacity and glycocalyx thickness (determined by perfused boundary region) was detected ( P = 0.045, r = 0.303). Increased exercise performance at follow-up also correlated with glycocalyx thickness ( P = 0.031, r = 0.416), and increased high-intensity sprinting speed was associated with an increased number of perfused vessels ( P = 0.0129, r = 0.449). Literature search identified miR-143, -96-5p, and -24, which were upregulated by HIIT already at baseline and showed an association with peak blood lactate levels after sprints (all P < 0.05). Moreover, increased baseline miR-143 levels predicted increased glycocalyx thickness at follow-up (AUCmiR-143 = 0.92, 95% confidence interval, 0.81–1.0, P = 0.0008). Elevated resting miR-126 levels after the intervention were associated with cell-free versican mRNA levels. We conclude that HIIT induces changes in the endothelial glycocalyx of the microvasculature. Associated miRNAs such as miR-143 may represent a tool for monitoring early vasculoprotective adaptations to physical activity. NEW & NOTEWORTHY High-intensity interval training is known to improve health-related fitness in general and in lifestyle-induced chronic diseases. To visualize microvasculature structure and to detect exercise-induced changes, sublingual sidestream dark-field imaging microscopy was used, and circulating miRNAs were measured. This study shows that exercise-induced changes correlate with associated circulating miRNA, which might be useful for monitoring vasculoprotective effects. Furthermore, sidestream dark-field imaging may represent a sensitive tool for the early detection of exercise-induced systemic vascular changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.