We have recently proposed the hypothesis that inhibition of the cyclic nucleotide phosphodiesterase (PDE) 10A may represent a new pharmacological approach to the treatment of schizophrenia (Curr Opin Invest Drug 8: 54 -59, 2007 386 -396, 2006). Our current understanding of the physiological role of PDE10A and the therapeutic utility of PDE10A inhibitors derives in part from studies with papaverine, the only pharmacological tool for this target extensively profiled to date. However, this agent has significant limitations in this regard, namely, relatively poor potency and selectivity and a very short exposure half-life after systemic administration. In the present report, we describe the discovery of a new class of PDE10A inhibitors exemplified by TP-10 (2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid), an agent with greatly improved potency, selectivity, and pharmaceutical properties. These new pharmacological tools enabled studies that provide further evidence that inhibition of PDE10A represents an important new target for the treatment of schizophrenia and related disorders of basal ganglia function.
Here we describe the properties of CP-154,526, a potent and selective nonpeptide antagonist of corticotropin (ACTH) releasing factor (CRF) receptors. CP-154,526 binds with high affinity to CRF receptors (K; < 10 nM) and blocks CRF-stimulated adenylate cyclase activity in membranes prepared from rat cortex and pituitary. Systemically administered CP-154,526 antagonizes the stimulatory effects of exogenous CRF on plasma ACTH, locus coeruleus neuronal firing and startle response amplitude. Potential anxiolytic activity of CP-154,526 was revealed in a fearpotentiated startle paradigm. These data are presented in the context of clinical findings, which suggest that CRF is hypersecreted in certain pathological states. We propose that a CRF antagonist such as CP-154,526 could affirm the role of CRF in certain psychiatric diseases and may be of significant value in the treatment of these disorders.Corticotropin releasing factor (CRF) is a 41-amino acid peptide initially identified as a hypothalamic factor responsible for stimulating corticotropin (ACTH) secretion from the anterior pituitary (1, 2). CRF causes a rapid increase in plasma ACTH and glucocorticoid levels when given intravenously (3). Activation of the hypothalamic-pituitary-adrenal (HPA) axis can also result from release of CRF from the paraventricular nucleus of the hypothalamus in response to various stressors (1, 4). In the central nervous system, both CRF-like immunoreactivity and high affinity CRF receptors are heterogeneously distributed in the brain (5, 6). Characterizations of these extrahypothalamic CRF systems demonstrate that, in parallel with its actions on the HPA axis, CRF also acts as a neurotransmitter or neuromodulator to coordinate stress-induced neural responses in the brain (7,8).Intracerebroventricular administration of CRF to rats leads to a constellation of neurochemical, neurophysiological, and behavioral sequelae that include activation of central noradrenergic systems and enhancement of behavioral responses to external stimuli (9-13). In this regard, increases in norepinephrine turnover (10) and in the firing rate of locus coeruleus neurons (13) have been observed following CRF injection. Physiological stressors such as nitroprusside infusions also increase locus coeruleus neuronal firing, an effect blocked by a CRF antagonist (a-helical CRF9-41) and consequently thought to be mediated by endogenous CRF (14,15). The response to hemodynamic stress in this case can be desensitized by chronic treatment with tricyclic antidepressants, suggesting that one possible mode of action of antidepressants might be to alter central CRF neurotransmission (16). In behavioral paradigms, CRF injection i.c.v. produces anxiogenic-like effects in several rodent models (e.g. 17-20). These effects are antagonized by central infusion of peptide antagonists (a-helical CRF9-41 and D-Phe CRF12-41), suggesting the involvement of CRF in anxiety and the utility of CRF antagonists as anxiolytics. The persistence ofbehavioral activation in hypophysectomize...
By utilizing structure-based drug design (SBDD) knowledge, a novel class of phosphodiesterase (PDE) 10A inhibitors was identified. The structure-based drug design efforts identified a unique "selectivity pocket" for PDE10A inhibitors, and interactions within this pocket allowed the design of highly selective and potent PDE10A inhibitors. Further optimization of brain penetration and drug-like properties led to the discovery of 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920). This PDE10A inhibitor is the first reported clinical entry for this mechanism in the treatment of schizophrenia.
The erbB-2 oncogene encodes a transmembrane protein tyrosine kinase which plays a pivotal role in signal transduction and has been implicated when overexpressed in breast, ovarian, and gastric cancers. Naturally occurring benzoquinoid ansamycin antibiotics herbimycin A, geldanamycin (GDM), and dihydrogeldanamycin were found to potently deplete p185, the erbB-2 oncoprotein, in human breast cancer SKBR-3 cells in culture. Chemistry efforts to modify selectively the quinoid moiety of GDM afforded derivatives with greater potency in vitro and in vivo. Analogs demonstrated inhibition of p185 phosphotyrosine in cell culture and in vivo after systemic drug administration to nu/nu nude mice bearing Fisher rat embryo cells transfected with human erbB-2 (FRE/erbB-2). Specifically, dosed intraperitoneally at 100 mg/kg, 17-(allylamino)-17-demethoxygeldanamycin and other 17-amino analogs were effective at reducing p185 phosphotyrosine in subcutaneous flank FRE/erbB-2 tumors. Modifications to the 17-19-positions of the quinone ring revealed a broad structure-activity relationship in vitro.
Overexpression of the erbB-2 oncogene has been linked to poor prognosis in breast, ovarian, and gastric cancers. Naturally occurring benzoquinoid ansamycin antibiotics herbimycin A, geldanamycin (GDM), and dihydrogeldanamycin were found to potently deplete p185, the erbB-2 oncoprotein, in human breast cancer SKBR-3 cells in culture. Chemistry efforts to modify selectively the ansa ring of GDM afforded derivatives with greater potency in vitro and in vivo. Analogs demonstrated inhibition of p185 phosphotyrosine in cell culture and in vivo after systemic drug administration to nu/nu nude mice bearing Fisher rat embryo cells transfected with human erbB-2. Functional group modification in the ansa ring was performed stereoselectively and regiospecifically without the need for protection strategies. Essential functional groups that were required for anti-erbB-2 activity were the 7-carbamate and the 2,3-double bond. Modification of the functional groups at the other positions was permitted. Structure-activity relationships are described for 1-5-, 7-9-, 11-, 15-, and 22-substituted geldanamycins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.