Distinguishing tumor from normal glandular breast tissue is an important step in breast-conserving surgery. Because this distinction can be challenging in the operative setting, up to 40% of patients require an additional operation when traditional approaches are used.Here, we present a proof-of-concept study to determine the feasibility of using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) for identifying and differentiating tumor from normal breast tissue. We show that tumor margins can be identified using the spatial distributions and varying intensities of different lipids. Several fatty acids, including oleic acid, were more abundant in the cancerous tissue than in normal tissues. The cancer margins delineated by the molecular images from DESI-MSI were consistent with those margins obtained from histological staining. Our findings prove the feasibility of classifying cancerous and normal breast tissues using ambient ionization MSI. The results suggest that an MSbased method could be developed for the rapid intraoperative detection of residual cancer tissue during breast-conserving surgery.B reast cancer is the most commonly diagnosed carcinoma in women in the United States and Western countries. Breast conservation surgery (BCS) has become the preferred treatment option for many women with early-stage breast cancer (1). BCS entails resection of the tumor, with a clean margin of normal tissue around it. Surgery is usually followed by radiation therapy. Results from seven large randomized prospective studies, with the largest two having over 20 y of follow-up, have shown equal survival when comparing BCS coupled with whole-breast radiation and mastectomy (2, 3).Normally, breast surgeons aim to remove a patient's tumor, along with a rim of normal tissue that is free of cancer. Preoperative mammography, ultrasonography, or MRI may be used by the surgeon to guide adequate resection (4-6). Despite numerous improvements in imaging and surgical technique, the need for reexcision to achieve complete tumor resection in the United States typically ranges from 20-40% (7-15), and has been reported as being as high as 60% (16). The importance of reexcision is underscored by numerous studies, which have shown that incomplete resection of tumor and positive margins are associated with increased locoregional recurrence compared with negative margins (12,(17)(18)(19)(20). Furthermore, the landmark meta-analysis performed by the Early Breast Cancer Trialists' Collaborative Group (18, 21) directly linked local recurrence to survival, placing great emphasis on the surgeon's role in minimizing local recurrence by obtaining adequate margins.Breast tumor reexcisions are accompanied by a number of undesirable problems: The completion of therapy is delayed, infection rates are increased, cost is increased, there can be a negative psychological impact on the patient, and there can be diminished aesthetic outcomes (22-24). The development of an intraoperative technique that allows the fast and accurate ident...
The remarkably large cluster Sc4(mu3-O)2 has been obtained trapped inside an Ih-C80 cage by conducting the vaporization of graphite rods doped with copper(II) nitrate and scandium(III) oxide in an electric arc under a low pressure helium atmosphere with an added flow of air. The product has been isolated by chromatography and identified by high-resolution mass spectrometry. The structure of Sc4(mu3-O)2@Ih-C80 has been determined by X-ray crystallography on a crystal of Sc4(mu3-O)2@Ih-C80.NiII(OEP).2(C6H6). The Sc4(mu3-O)2 unit consists of a distorted tetrahedron of scandium atoms with oxygen atoms bridging two of its faces. The Sc-Sc distances range from 2.946(7) to 3.379(7) A.
The effect of ion space-charge on mass accuracy in Fourier transform ion cyclotron resonance mass spectrometry is examined. Matrix-assisted laser desorption/ionization is used to form a population of high-molecular-weight polymer ions with a wide mass distribution. The density of the ions in the analyzer cell is varied using ion remeasurement and suspended trapping techniques to allow the effect of ion space charge to be examined independently of other experimental influences. Observed cyclotron frequency exhibits a linear correlation with ion population. Mass errors of 100 ppm or more in externally calibrated mass spectra result when ion number is not taken into account. By matching the total ion intensities of calibrant and analyte mass spectra, the protonated ion of insulin B-chain, 3494.6513 Da, is measured with an accuracy of 0.07 ppm (average of 10 measurements, σ = 2.3 ppm, average absolute error 1.6 ppm) using a polymer sample as an external calibrant. Alternatively, the correction for space charge can be made by using a calibration equation that accounts for the total ion intensity of the mass spectrum. A calibration procedure is proposed and is tested with the measurement of the mass of insulin B-chain. A mass accuracy of 2.0 ppm (average of 20 measurements, σ = 4.2 ppm, average absolute error 3.5 ppm) is achieved. Space-charge-induced mass errors are more significant for samples with many components, such as a polymer, than for single-component samples such as purified peptides or proteins.
Structural characterization of glycosaminoglycans (GAGs) has been a challenge in the field of mass spectrometry, and the application of electron detachment dissociation (EDD) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has shown great promise to GAG oligosaccharide characterization in a single tandem mass spectrometry experiment. In this work, we apply the technique of negative electron transfer dissociation (NETD) to GAGs on a commercial ion trap mass spectrometer. NETD of GAGs, using fluoranthene or xenon as the reagent gas, produces fragmentation very similar to previously observed EDD fragmentation. Using fluoranthene or xenon, both glycosidic and cross-ring cleavages are observed, as well as even-and odd-electron products. The loss of SO 3 can be minimized and an increase in cross-ring cleavages is observed if a negativelycharged carboxylate is present during NETD, which can be controlled by the charge state or the addition of sodium. NETD effectively dissociates GAGs up to eight saccharides in length, but the low resolution of the ion trap makes assigning product ions difficult. Similar to EDD, NETD is also able to distinguish the epimers iduronic acid from glucuronic acid in heparan sulfate tetrasaccharides and suggests that a radical intermediate plays an important role in distinguishing these epimers. These results demonstrate that NETD is effective at characterizing GAG oligosaccharides in a single tandem mass spectrometry experiment on a widely available mass spectrometry platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.