Models of vegetation function are widely used to predict the effects of climate change on carbon, water and nutrient cycles of terrestrial ecosystems, and their feedbacks to climate. Stomatal conductance, the process that governs plant water use and carbon uptake, is fundamental to such models. In this paper, we reconcile two long-standing theories of stomatal conductance. The empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of stomatal behaviour in response to environmental conditions. The optimal approach is based on the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained. We reconcile these two approaches by showing that the theory of optimal stomatal conductance can be used to derive a model of stomatal conductance that is closely analogous to the empirical models. Consequently, we obtain a unified stomatal model which has a similar form to existing empirical models, but which now provides a theoretical interpretation for model parameter values. The key model parameter, g 1 , is predicted to increase with growth temperature and with the marginal water cost of carbon gain. The new model is fitted to a range of datasets ranging from tropical to boreal trees. The parameter g 1 is shown to vary with growth temperature, as predicted, and also with plant functional type. The model is shown to correctly capture responses of stomatal conductance to changing atmospheric CO 2 , and thus can be used to test for stomatal acclimation to elevated CO 2 . The reconciliation of the optimal and empirical approaches to modelling stomatal conductance is important for global change biology because it provides a simple theoretical framework for analyzing, and simulating, the coupling between carbon and water cycles under environmental change.
Summary• Data from 13 long-term (> 1 yr), field-based studies of the effects of elevated CO 2 concentration ([CO 2 ]) on European forest tree species were analysed using meta-analysis and modelling. Meta-analysis was used to determine mean responses across the data sets, and data were fitted to two commonly used models of stomatal conductance in order to explore response to environmental conditions and the relationship with assimilation.• Meta-analysis indicated a significant decrease (21%) in stomatal conductance in response to growth in elevated [CO 2 ] across all studies. The response to [CO 2 ] was significantly stronger in young trees than old trees, in deciduous compared to coniferous trees, and in water stressed compared to nutrient stressed trees. No evidence of acclimation of stomatal conductance to elevated [CO 2 ] was found.• Fits of data to the first model showed that growth in elevated [CO 2 ] did not alter the response of stomatal conductance to vapour pressure deficit, soil water content or atmospheric [CO 2 ]. Fits of data to the second model indicated that conductance and assimilation responded in parallel to elevated [CO 2 ] except when water was limiting.• Data were compared to a previous meta-analysis and it was found that the response of g s to elevated [CO 2 ] was much more consistent in long-term (> 1 yr) studies, emphasising the need for long-term elevated [CO 2 ] studies. By interpreting data in terms of models, the synthesis will aid future modelling studies of responses of forest trees to elevated [CO 2 ].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.