Giardia lamblia infection of the human small intestine is a common protozoan cause of diarrheal disease worldwide. Although infection is luminal and generally self-limiting, and secretory Abs are thought to be important in host defense, other defense mechanisms probably affect the duration of infection and the severity of symptoms. Because intestinal epithelial cells produce NO, and its stable end products, nitrite and nitrate, are detectable mainly on the apical side, we tested the hypothesis that NO production may constitute a host defense against G. lamblia. Several NO donors, but not their control compounds, inhibited giardial growth without affecting viability, suggesting that NO is cytostatic rather than cytotoxic for G. lamblia. NO donors also inhibited giardial differentiation induced by modeling crucial environmental factors, i.e., encystation induced by bile and alkaline pH, and excystation in response to gastric pH followed by alkaline pH and protease. Despite the potent antigiardial activity of NO, G. lamblia is not simply a passive target for host-produced NO, but has strategies to evade this potential host defense. Thus, in models of human intestinal epithelium, G. lamblia inhibited epithelial NO production by consuming arginine, the crucial substrate used by epithelial NO synthase to form NO. These studies define NO and arginine as central components in a novel cross-talk between a luminal pathogen and host intestinal epithelium.
Antimicrobial polypeptides such as the defensins kill a wide range of organisms, including bacteria, fungi, viruses, and tumor cells. Because of the recent finding that intestinal defensins, also known as cryptdins, are synthesized by the Paneth cells of the small intestinal crypts and released into the lumen, we asked whether defensins and other small cationic antimicrobial peptides could kill the trophozoites of Giardia lamblia, which colonize the small intestine. Four mouse cryptdins, two neutrophil defensins (HNP-1 [human] and NP-2 [rabbit]), and the unique tryptophan-rich bovine neutrophil polypeptide indolicidin each had some antigiardial activity against trophozoites in vitro. Cryptdins 2 and 3, indolicidin, and NP-2 each reduced viability by more than 3 log units in 2 h, and killing by all peptides was dose and time dependent. Exposure of trophozoites to peptides frequently resulted in cell aggregation and dramatic changes in morphology. The mechanism of binding and lysis appeared to involve charge interactions, since 150 mM NaCl as well as millimolar levels of Ca2' and Mg2' inhibited killing by most of the peptides. Our studies show that G. lamblia is sensitive to defensins and indolicidin and suggest that these small polypeptides could play a role in nonimmune host defenses.
SummaryEncystation of Giardia lamblia is required for survival outside the host, whereas excystation initiates infection. The dormant cyst was considered an adaptation to external survival and passage through the stomach. However, we found previously that trophozoites which had recovered after completion of the life cycle had switched their major variant surface protein (VSP), called TSA 417, but neither the timing nor the molecular mechanism of switching had been elucidated. Here we demonstrate that TSA 417 predominates in cysts, but is downregulated during the stage of excystation that models cyst arrival in the small intestine. Transcripts of new VSPs appear late in encystation, and during and after excystation. Trophozoites appear to prepare for switching during encystation, when the major VSP on the cell surface diminishes and is internalized in lysosome-like vacuoles. As short-range DNA rearrangements were not detected, giardial VSP switching during differentiation appears to resemble the in situ switching of surface glycoproteins in African trypanosomes. We also report a unique extended 15 nucleotide polyadenylation signal in all VSP transcripts, but not in other known giardial genes. Antigenic variation during encystation-excystation may be a novel form of immune evasion that could help explain the common occurrence of reinfection by Giardia and other parasites with similar life cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.