This paper considers the accuracy of projection method approximations to the initial-boundary-value problem for the incompressible Navier-Stokes equations. The issue of how to correctly specify numerical boundary conditions for these methods has been outstanding since the birth of the second-order methodology a decade and a half ago. It has been observed that while the velocity can be reliably computed to second-order accuracy in time and space, the pressure is typically only first-order accurate in the L ∞ -norm. This paper identifies the source of this problem in the interplay of the global pressure-update formula with the numerical boundary conditions and presents an improved projection algorithm which is fully second-order accurate, as demonstrated by a normal mode analysis and numerical experiments. In addition, a numerical method based on a gauge variable formulation of the incompressible Navier-Stokes equations, which provides another option for obtaining fully second-order convergence in both velocity and pressure, is discussed. The connection between the boundary conditions for projection methods and the gauge method is explained in detail.
A semi-implicit formulation of the method of spectral deferred corrections (SISDC) for ordinary di erential equations with both sti and nonsti terms is presented. Several modi cations and variations to the original spectral deferred corrections method by Dutt, Greengard, and Rokhlin concerning the choice of integration points and the form of the correction iteration are presented. The stability and accuracy of the resulting ODE methods are explored analytically and numerically. The SISDC methods are intended to be combined with the method of lines approach t o y i e l d a exible framework for creating higher-order semi-implicit methods for partial di erential equations. A discussion and numerical examples of the SISDC method applied to advection-di usion type equations are included. The results suggest that higher-order SISDC methods are more e cient than semi-implicit Runge-Kutta methods for moderately sti problems in terms of accuracy per function evaluation.
A new method for the parallelization of numerical methods for partial differential equations (PDEs) in the temporal direction is presented. The method is iterative with each iteration consisting of deferred correction sweeps performed alternately on fine and coarse space-time discretizations. The coarse grid problems are formulated using a space-time analog of the full approximation scheme popular in multigrid methods for nonlinear equations. The current approach is intended to provide an additional avenue for parallelization for PDE simulations that are already saturated in the spatial dimensions. Numerical results and timings on PDEs in one, two, and three space dimensions demonstrate the potential for the approach to provide efficient parallelization in the temporal direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.