Let f be a continuous function on R n , and suppose f is continuously differentiable on an open dense subset. Such functions arise in many applications, and very often minimizers are points at which f is not differentiable. Of particular interest is the case where f is not convex, and perhaps not even locally Lipschitz, but whose gradient is easily computed where it is defined. We present a practical, robust algorithm to locally minimize such functions, based on gradient sampling. No subgradient information is required by the algorithm.When f is locally Lipschitz and has bounded level sets, and the sampling radius ǫ is fixed, we show that, with probability one, the algorithm generates a sequence with a cluster point that is Clarke ǫ-stationary. Furthermore, we show that if f has a unique Clarke stationary pointx, then the set of all cluster points generated by the algorithm converges tox as ǫ is reduced to zero.
Primal-dual interior-point path-following methods for semide nite programming (SDP) are considered. Several variants are discussed, based on Newton's method applied to three equations: primal feasibility, dual feasibility, and some form of centering condition. The focus is on three such algorithms, called respectively the XZ, XZ+ZX and Q methods. For the XZ+ZX and Q algorithms, the Newton system is well-de ned and its Jacobian is nonsingular at the solution, under nondegeneracy assumptions. The associated Schur complement matrix has an unbounded condition number on the central path, under the nondegeneracy assumptions and an additional rank assumption. Practical aspects are discussed, including Mehrotra predictor-corrector variants and issues of numerical stability. Compared to the other methods considered, the XZ+ZX method is more robust with respect to its ability to step close to the boundary, converges more rapidly, and achieves higher accuracy.
The variational approach for electronic structure based on the two-body reduced density matrix is studied, incorporating two representability conditions beyond the previously used P, Q, and G conditions. The additional conditions (called T1 and T2 here) are implicit in the work of Erdahl [Int. J. Quantum Chem. 13, 697 (1978)] and extend the well-known three-index diagonal conditions also known as the Weinhold-Wilson inequalities. The resulting optimization problem is a semidefinite program, a convex optimization problem for which computational methods have greatly advanced during the past decade. Formulating the reduced density matrix computation using the standard dual formulation of semidefinite programming, as opposed to the primal one, results in substantial computational savings and makes it possible to study larger systems than was done previously. Calculations of the ground state energy and the dipole moment are reported for 47 different systems, in each case using an STO-6G basis set and comparing with Hartree-Fock, singly and doubly substituted configuration interaction, Brueckner doubles (with triples), coupled cluster singles and doubles with perturbational treatment of triples, and full configuration interaction calculations. It is found that the use of the T1 and T2 conditions gives a significant improvement over just the P, Q, and G conditions, and provides in all cases that we have studied more accurate results than the other mentioned approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.