Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing quantitative trait locus (e/sQTL) analyses is generally performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements active during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs, and allele-specific expression in cultured cells representing two major developmental stages, primary human neural progenitors (n ¼ 85) and their sorted neuronal progeny (n ¼ 74), identifying numerous loci not detected in either bulk developing cortical wall or adult cortex. Using colocalization and genetic imputation via transcriptomewide association, we uncover cell-type-specific regulatory mechanisms underlying risk for brain-relevant traits that are active during neocortical differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with common variant associations for cortical surface area and educational attainment.
Common genetic risk for neuropsychiatric disorders is enriched in regulatory elements active during cortical neurogenesis. However, the mechanisms mediating the effects of genetic variants on gene regulation are poorly understood. To determine the functional impact of common genetic variation on the non-coding genome longitudinally during human cortical development, we performed a chromatin accessibility quantitative trait loci (caQTL) analysis in neural progenitor cells and their differentiated neuronal progeny from 92 donors. We identified 8,111 caQTLs in progenitors and 3,676 caQTLs in neurons, with highly temporal, cell-type specific effects. A subset (~20%) of caQTLs were also associated with changes in gene expression. Motif-disrupting alleles of transcriptional activators generally led to decreases in chromatin accessibility, whereas motif-disrupting alleles of repressors led to increases in chromatin accessibility. By integrating cell-type specific caQTLs and brain-relevant genome-wide association data, we were able to fine-map loci and identify regulatory mechanisms underlying non-coding neuropsychiatric disorder risk variants.
Background: Lipoprotein lipase (LPL) clears triglycerides from the blood, and angiopoietin-like protein 4 (ANGPTL4) inhibits LPL activity. Results: Inhibited LPL is in a complex with ANGPTL4, and upon dissociation LPL regains activity. Conclusion: ANGPTL4 is a reversible, noncompetitive inhibitor of LPL, not an unfolding molecular chaperone as reported previously. Significance: Understanding the mechanism of LPL inhibition supports efforts to develop new therapies for hypertriglyceridemia.
In addition to their degradative role in protein turnover, proteases play a key role as positive or negative regulators of signal transduction pathways and therefore their dysregulation contributes to many disease states. Regulatory roles of proteases include their hormone-like role in triggering G protein-coupled signaling (Protease-Activated-Receptors); their role in shedding of ligands such as EGF, Notch and Fas; and their role in signaling events that lead to apoptotic cell death. Dysregulated activation of apoptosis by the caspase family of proteases has been linked to diseases such as cancer, autoimmunity and inflammation. In an effort to better understand the role of proteases in health and disease, a luciferase biosensor is described which can quantitatively report proteolytic activity in live cells and mouse models. The biosensor, hereafter referred to as GloSensor Caspase 3/7 has a robust signal to noise (50–100 fold) and dynamic range such that it can be used to screen for pharmacologically active compounds in high throughput campaigns as well as to study cell signaling in rare cell populations such as isolated cancer stem cells. The biosensor can also be used in the context of genetically engineered mouse models of human disease wherein conditional expression using the Cre/loxP technology can be implemented to investigate the role of a specific protease in living subjects. While the regulation of apoptosis by caspase's was used as an example in these studies, biosensors to study additional proteases involved in the regulation of normal and pathological cellular processes can be designed using the concepts presented herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.