Summary Climate change is dramatically altering the distribution and abundance of many species. An examination of traits may elucidate why some species respond more strongly to climate change than others, particularly when ecophysiological thresholds set range limits. Mangrove forests are expanding polewards. Although multiple environmental factors influence mangrove distributions, freeze tolerance is hypothesized to determine their poleward extent. To investigate how trait variation influences mangroves’ responses to a warming climate, we examined how freeze tolerance and associated traits varied along a latitudinal cline for three co‐occurring mangrove species. We sampled individuals along >200 km of Florida, USA's eastern coast, from the mangroves’ most northern populations, where freeze events were historically common, to southern populations where freeze events continue to be rare. We measured a suite of traits in field‐collected adults and their garden‐reared offspring, and assessed their responses to an experimentally imposed freeze event. We asked whether freeze tolerance and other traits varied predictably among species, with latitude, and between life stages. Species and populations varied dramatically in freeze tolerance, with the highest freeze tolerance in the northernmost species and populations, and the lowest freeze tolerance in the southernmost species and populations. Additionally, leaves of all three species were drier, tougher, thicker and more freeze‐tolerant at the range edge. Tolerance to freezing appears to set the range limits for these mangrove species. All three species converged on a similar phenotype at the range edge, but species‐level variation in freezing resistance was conserved. Thus, these species are likely to continue migrating at different rates in response to climate warming, potentially leading to the dissolution of typically co‐occurring species and creating ‘no analogue’ coastal mangrove–marsh communities.
Abstract. Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.